首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
为了研究可见-近红外(Vis-NIR)高光谱成像对滩羊肉中总酚浓度(TPC)快速检测的可行性,基于光谱信息融合图像纹理特征建立TPC含量的预测模型,实现滩羊肉中TPC含量的可视化表达。将样本集根据3∶1的比例划分成校正集和预测集,采用多元散射校正(MSC)、基线校准(Baseline)、去趋势(De-trending)、卷积平滑(S-G)、标准正态变量变换(SNV)、归一化(Normalize)等校正方法去除原始光谱中不良散射等干扰信息。通过竞争性自适应加权抽样(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩法(iVISSA)和变量组成集群分析-迭代保留信息变量(VCPA-IRIV)提取TPC浓度的代表性特征光谱。采用灰度共生矩阵(GLCM)算法依次提取肉样第1主成分图像中纹理特征。基于特征光谱及图谱融合信息建立滩羊肉中TPC含量的偏最小二乘回归(PLSR)与最小二乘支持向量机(LSSVM)预测模型并进行对比分析。结果表明,(1)利用De-trending+SNV预处理后的光谱数据建立的PLSR预测模型性能较好,其R2C=0.874 9,R2P=0.793 2;(2)采用CARS,BOSS,iVISSA和VCPA-IRIV分别提取出了23,35,57和43个特征波长,占全光谱的18.4%,28%,45.6%和16.8%;(3)采用BOSS法提取的关键性波长建立的LSSVM模型性能较好,其R2C=0.851 3,R2P=0.745 9,RMSEC=0.116 8和RMSEP=0.155 0;(4)与基于特征波长建立的预测模型相比,BOSS-ASM-ENT-CON-LSSVM模型为滩羊肉中TPC浓度的最佳图谱融合预测模型(R2C=0.850 0,R2P=0.770 9,RMSEC=0.116 0,RMSEP=0.144 7);(5)利用BOSS-PLSR简化模型将TPC浓度反演到样本的高光谱图像上,通过色彩直观化形式展现出来,实现TPC含量的可视化表达。  相似文献   

2.
可溶性固形物(SSC)和可滴定总酸(TA)含量是影响李果实品质的重要指标,经典的破坏性检测方法不适用于果实按品质分级,近红外光谱(NIRS)检测方法具有速度快、操作简便、可无损检测果实品质。为实现NIRS无损快速检测安哥诺李果实可溶性固形物和可滴定总酸含量,利用NIRS采集李果实的漫反射光谱,同时采用糖度计测定安哥诺李果实的SSC,采用滴定法测定了李果实TA含量,使用杠杆值和F概率值剔除异常样品,采用软件优化结合人工筛选光谱波段,使用了消除常数偏移量、减去一条直线、矢量归一化(SNV)、最大-最小归一化、多元散射校正(MSC)、一阶和二阶导数结合平滑处理、一阶导数结合减去一条直线和平滑处理、以及一阶导数结合SNV或MSC校正等光谱预处理方法,分别采用偏最小二乘法(PLS)和主成分分析结合反向传播人工神经网络(BP-ANN)建立李果实SSC、TA的定量分析模型。结果表明,李果实SSC和TA的最佳PLS建模效果波段范围分别为4 000~8 852和4 605~6 523 cm-1。SSC的PLS模型的最佳光谱预处理方法为MSC校正,最佳模型校正相关系数(Rc)为0.914 4,预测相关系数(Rp)为0.878 5,校正均方根误差(RMSEC)为0.91,预测均方根误差(RMSEP)为1.00。经一阶微分结合SNV和9点平滑的方法预处理后,TA的PLS模型效果最佳,Rc,Rp,RMSEC,RMSEP分别为0.860 3,0.819 6,0.80和0.86。提取了李果实SSC和TA光谱数据的主成分,并基于前10个主成分得分建立了李果实SSC和TA最佳BP-ANN定量分析模型,其Rc,Rp,RMSEC和RMSEP分别为0.976 7,0.889 7,0.75和0.99;TA的BP-ANN模型的相应参数值依次为0.974 3,0.897 7,0.62和0.83,与采用PLS算法建立的定量模型相比较,BP-ANN模型具有较高的Rc,Rp和较低的RMSEC,RMSEP,因此BP-ANN模型对SSC和TA指标的定量分析结果更佳。  相似文献   

3.
利用高光谱成像技术与二维相关光谱(2D-COS)结合化学计量学检测灵武长枣半纤维素含量。采用定量瘀伤装置获得0,Ⅰ,Ⅱ,Ⅲ,Ⅳ级瘀伤长枣模型,通过高光谱和分光光度计分别获得样品高光谱图像和半纤维素含量。蒙特卡洛异常值检测法剔除异常样本后,分别用随机划分法(RS),Kennard-Stone法(KS)、光谱-理化值共生距离法(SPXY)和3∶1比例法对样本集划分校正预测。采用基线校准(Baseline)、去趋势(De-trending)和标准化(Normalize)对长枣原始光谱预处理后建立偏最小二乘回归模型(PLSR),优选最佳样本集划分及预处理方法。利用2D-COS将光谱信号扩展到第2维,在全光谱范围内寻找与半纤维素含量相关的敏感波段区间。采用竞争性自适应加权算法(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩方法(iVISSA)、变量组合集群分析法(VCPA)以及iVISSA+BOSS,iVISSA+CARS和iVISSA+VCPA方法在2D-COS敏感波段区间进行特征波长提取,并建立基于特征波长的PLSR模型。结果表明,样本集经3∶1划分和Baseline预处理后建立的基于全波段的PLSR模型最优,故最佳样本集划分方法为3∶1,预处理方法为Baseline,用于后续特征波长提取。通过2D-COS分析发现3个与半纤维素相关的自相关峰(401,641和752 nm);在2D-COS敏感区域(401~752 nm范围内),采用BOSS,CARS,iVISSA,VCPA,iVISS+BOSS,iVISS+CARS,iVISS+VCPA分别提取了14,26,39,12,15,22和11个对应的特征波长,占总波长的18.9%,35.1%,52.7%,16.2%,20.2%,29.7%和14.8%。对比2D-COS和特征波建立的PLSR模型,2D-COS+iVISSA-PLSR模型效果较好,其R2C=0.747 9,R2P=0.604 7,RMSEC=0.043 8,RMSEP=0.060 3。研究表明,利用高光谱成像技术结合2D-COS可实现灵武长枣半纤维素含量的快速检测。  相似文献   

4.
为了实现兰州百合关键营养物质蛋白质和多糖的快速无损检测,在12 000~4 000 cm-1光谱范围内采集了59份兰州百合粉的近红外光谱(NIRS)。首先运用SG、Normalize、SNV、MSC、Detrend、OSC、SG+1D、SG+Normalize、SG+SNV和SG+Detrend十种预处理方法对原始光谱数据进行处理,确定蛋白质的最佳预处理方法为SG+Detrend、多糖的最佳预处理方法为Detrend;然后运用CARS、SPA和PCA三种算法对预处理的光谱数据进行特征波长筛选,确定蛋白质和多糖的最佳特征波长提取方法均为SPA算法;最后采用PLSR法建立了兰州百合关键营养物质蛋白质和多糖含量的预测模型,结果显示,经过SG+Detrend_SPA处理所建立的蛋白质PLSR模型中,预测集相关系数Rp为0.810 6,预测集均方根误差RMSEP为1.195 3;经过Detrend_SPA处理所建立的多糖PLSR模型中,预测集相关系数Rp为0.810 9,预测集均方根误差RMSEP为2.0946。考虑到经典PLSR无损预测模型精度的限制,在该研究中提出SOM-RBF神经网络无损预测模型。首先利用SOM网络对数据样本进行聚类,然后将得到的聚类类别数和聚类中心作为RBF网络的隐层节点个数和隐层节点数据中心,以此来优化RBF的结构参数。在建立的蛋白质SOM-RBF神经网络模型中,预测集相关系数Rp为0.866 6,预测集均方根误差RMSEP为1.038 5;建立的多糖SOM-RBF神经网络模型中,预测集相关系数Rp为0.868 1,预测集均方根误差RMSEP为1.799 4。比较PLSR和SOM-RBF两种模型对两种物质的预测结果,确定了SOM-RBF神经网络模型为最优建模方法,最终确定在蛋白质检测中,最优模型为基于SG+Detrend_SPA_SOM-RBF建立的模型,模型的预测集相关系数较PLSR高5.6%,预测集均方根误差较PLSR低0.156 8;在多糖检测中,确定的最优模型为基于Detrend_SPA_SOM-RBF建立的模型,模型的预测集相关系数较PLSR高5.72%,预测集均方根误差较PLSR低0.295 2。研究结果表明,运用NIR和SOM-RBF技术可以实现对兰州百合关键营养物质蛋白质和多糖的快速无损检测,为今后快速无损检测兰州百合营养物质提供理论依据。  相似文献   

5.
柑橘叶片水分亏缺是影响柑橘生长发育的重要因素之一,为研究水分胁迫对柑橘含水率的影响,利用高光谱快速无损检测柑橘叶片含水率,并应用伪彩色处理实现含水率可视化。收集100片柑橘叶片,使用烘干法得到鲜叶和烘干叶片一共500个不同梯度含水率的数据样本,将样本按7∶3的比例划分为训练集(350个样本)和测试集(150个样本),使用决定系数(R2)和均方根误差(RMSE)来评估模型预测的好坏。采用卷积神经网络(CNN)对高光谱数据进行预测,CNN模型使用一维卷积核,一共三层卷积池化层,使用RELU激活函数激活,输出层采用linear激活函数回归预测,使用nadam算法对模型进行优化更新,迭代次数为1 000次;将原始光谱数据和SG,MSC和SNV三种预处理后的光谱数据,与全波段、CARS筛选的特征波段、PCA提取的特征波段组合,导入CNN模型,确定最佳模型为原始光谱数据的CARS-CNN,训练集的R2c和RMSEC分别为0.967 9和0.016 3,测试集的R2v和RMSEV分别为0.947 0和0.021 4;原始光谱数据的全波段CNN模型效果其次,训练集的R2c和RMSEC分别为0.934 3和0.024 9,测试集的R2v和RMSEV分别为0.915 9和0.028 6。对比了不同预处理方式和特征波长选择的支持向量机回归模型(SVR)、偏最小二乘法回归模型(PLSR)、随机森林模型(RF)组合的最佳结果,将最佳组合模型(原始光谱数据+CARS+PLSR,SNV+PCA+RF,SNV+PCA+SVR)与原始光谱数据的CARS-CNN对比,结果表明,依然是原始光谱数据的CARS-CNN模型预测效果最佳。相较于其他的模型,CARS-CNN模型经过CARS筛选特征波段和卷积核进一步提取特征后,预测精度远高于SVR,PLSR和RF模型。选择训练好的CARS-CNN模型,将高光谱图片导入到模型中,计算每个像素点的含水率,得到伪彩色图像,能够可视化叶片的含水率分布情况。研究结果为柑橘叶片水分含量提供了更快速、更直观、更全面的评估,为研究柑橘叶片水分胁迫提供了依据,为智能灌溉决策的优化提供了参考。  相似文献   

6.
采用可见/近红外光谱技术结合化学计量学方法对油茶籽油三元体系掺假进行定量检测研究。将菜籽油和花生油按不同比例掺入纯油茶籽油中,获得掺假样本。采集纯油茶籽油及掺假样本在350~1 800 nm范围内的可见/近红外光谱数据,随机分为校正集和预测集,并从不同建模波段、预处理方法及建模方法角度对掺假预测模型进行优化。研究结果表明,菜籽油、花生油和总掺伪量的最优建模波段及预处理方法分别为750~1 770,900~1 770 ,870~1 770 nm和多元散射校正(MSC)、标准归一化处理(SNV)和二阶微分,而最优的建模方法均为最小二乘支持向量机(LSSVM)。对于最优掺假模型,菜籽油、花生油和总掺伪量的预测集相关系数(Rp)和预测均方根误差(RMSEP)分别为0.963,0.982,0.993和2.1%,1.5%,1.8%。由此可见,可见/近红外光谱技术结合化学计量学方法可以用于油茶籽油的三元体系掺假定量检测。  相似文献   

7.
可见近红外非成像光谱分析技术已被广泛用于土壤有机碳(SOC)含量估测,然而该技术的使用受土壤粗糙度的影响,对样本的前处理要求较高,导致模型的实用性受限。针对这一问题,以美国爱荷华州农田土壤为研究对象,使用成像及非成像光谱仪获取土壤样本研磨前后的可见近红外反射光谱,采用去包络线(CR)、吸光度变换(AB)、S-G平滑(SG)、标准正态变换(SNV)、多元散射校正(MSC)5种光谱预处理手段,利用偏最小二乘回归(PLSR)和支持向量回归(SVR)算法构建并对比土壤SOC光谱估算模型,探究利用成像光谱数据估测高粗糙度样本SOC含量的可行性。实验结果表明,使用成像光谱数据能够实现高粗糙度样本的SOC含量估算,而使用非成像光谱数据则无法估算高粗糙度样本的SOC含量;基于成像光谱数据建立的高粗糙度SOC最优PLSR估算模型R2能够达到0.739以及最优SVR估算模型R2为0.712,而基于非成像光谱数据建立的高粗糙度SOC最优PLSR和SVR估算模型R2仅仅分别为0.344和0.311。基于AB,SG,SNV和MSC这4种预处理手段之后的成像光谱数据建立的土壤样本研磨前的PLSR模型性能优于样本研磨之后建立的PLSR模型,而SVR模型性能正好相反。而对于非成像光谱数据来说,土壤样本研磨后建立PLSR和SVR模型精度总是强于样本研磨前建立的模型精度。对于这两种光谱数据和两个估算模型而言,不同的光谱预处理方法提高模型估算精度的能力不同。土壤样本研磨前后,基于成像光谱数据建立的PLSR和SVR模型性能均优于非成像光谱数据所构建的模型。成像光谱技术能够增强高粗糙度土壤样本可见近红外光谱与SOC的相关性,从而提高模型估算精度;能够克服土壤粗糙度的影响;为野外大尺度估测SOC含量提供了新的手段。  相似文献   

8.
为了实现快速检测果珍中的二氧化钛含量,提出了应用近红外光谱技术结合化学计量学的快速检测方法。研究采用了320份果珍样本进行光谱特性的检测,其中200个样本用来建模,120个样本进行预测。首先比较了标准正态变量校正(SNV)、变量标准化(Normalize)、多元散射校正(MSC)等6种不同的数据预处理方法对偏最小二乘法(PLS)建模预测效果的影响。然后将PLS模型与应用主成分(PC)建立的主成分-神经网络校正(PC-ANN)模型进行比较。结果表明,MSC预处理的效果最好,PLS模型的最佳主成分数为7,预测值与标准值的相关系数R2达0.900 8,预测标准误差RMSEP为0.05。PC-ANN模型预测值与标准值的R2为0.868 4,RMSEP为0.04。说明PLS模型比PC-ANN模型的预测效果好。同时本研究也说明能够应用可见/近红外技术对二氧化钛进行快速定量测定。  相似文献   

9.
生菜叶片绿度在作物生理及品质感官评价中具有重要作用。结合目前高光谱检测与分析技术在植物生理信息监测中的应用现状,开展了基于高光谱技术的生菜叶片绿度判别方法研究,以此为叶菜品质感官评价的定量化及基于高光谱技术的多功能生理信息同步采集装置的开发提供必要的理论支撑。本文以生菜为研究对象,在三种不同光照强度下开展栽培试验。以叶绿素相对含量(SPAD)作为反应绿度的参数,获取生菜整个生命周期中的动态高光谱和SPAD数据,分析了高光谱曲线的变化规律,建立了高光谱与SPAD之间的关系模型。采用Savitzky-Golay卷积平滑(SG)方法对原始高光谱数据进行降噪,平滑后的数据分别与多元散射校正(MSC),标准正态变量变换(SNV)和一阶导数(FD)三种预处理方法组合,采用竞争性自适应重加权取样法(CARS)和提取有效植被指数(VI)两种方法进行敏感波长提取,结合偏最小二乘(PLS)和最小二乘支持向量机(LSSVM)两种方法建模,以决定系数(R2)和均方根误差(RMSE)为评价指标,优选出最优绿度判定模型。结果表明:在10,20和30 d的生菜全生命周期内,不同光照强度下的高光谱曲线表现出总体变化趋势一致但反射率值不同的特征,在可见光450~680nm范围内,自然光照条件下的生菜高光谱反射率值要高于补光处理条件下的反射率值;而在近红外730~850 nm范围内,生菜叶片的高光谱响应特征恰好与可见光范围内相反。基于SG+FD预处理与CARS敏感波长提取方法的组合可实现叶绿素相对含量特征信息的最有效提取,提取的敏感波长占全波长的64.59%,与原始高光谱(1.25%)相比,提取的敏感波长数增加了63.34%。最终确定LSSVM方法为最优建模方法,基于SG+FD+CARS+LSSVM组合方法所建模型为最优生菜绿度判定模型,训练集R2c=0.920 7,RMSEC=1.161 0,预测集R2p=0.828 8,RMSEP=2.400 8,模型精度较高,可以实现生菜叶片绿度判别的目的。  相似文献   

10.
利用近红外光谱技术结合组合区间偏最小二乘(SiPLS)、竞争性自适应重加权(CARS)、连续投影算法(SPA)、无信息变量消除(UVE)特征提取方法,运用深度信念网络(DBN)建立蓝莓糖度的通用检测模型,实现蓝莓糖度在线无损快速检测。采集了“蓝丰”和“瑞卡”共280个蓝莓样本的近红外光谱,采用手持折光仪测定其糖度;首先利用联合X-Y的异常样本识别方法(ODXY)检测到蓝丰和瑞卡蓝莓分别有2个和4个样本呈现异常,剔除该6个异常样本,对其余274个样本利用光谱-理化值共生距离算法(SPXY)以3∶1的比例划分出训练集和测试集;其次,对比分析卷积平滑(S-G平滑)、中心化、多元散射校正等预处理对蓝莓原始光谱的改善效果,运用SiPLS对光谱降维,筛选特征波段,利用CARS,UVE和SPA方法对特征波段进行二次筛选,以最优的特征波长建立DBN和偏最小二乘回归(PLSR)模型。结果表明,蓝莓糖度近红外检测模型的最优预处理方法为S-G平滑,SiPLS方法挑选的蓝莓糖度最优波段为593~765和1 458~1 630 nm,UVE算法从SiPLS筛选的346个变量中优选出159个最佳波长。建立蓝莓糖度DBN模型时,分析了不同隐含层数对检测模型的影响,并以交互验证均方根误差(RMSECV)作为适应度函数,利用粒子群算法(PSO)对各隐含层神经元个数在[1,100]之间寻优,发现隐含层为3层且隐含层节点数为67-43-25时,DBN模型的RMSECV达到最小,为0.397 7。无论是以全光谱还是特征波长建模,蓝莓糖度近红外DBN模型均优于常规PLSR方法;尤其以UVE方法二次筛选的特征波长建立的模型大大减少了建模变量,且模型精度更高,蓝莓糖度最优的PLSR模型测试集相关系数(RP)为0.887 5,均方根误差(RMSEP)为0.395 9,最优DBN模型RP为0.954 2,RMSEP为0.310 5。研究表明,利用SiPLS-UVE进行特征提取,结合深度信念网络方法建立的蓝莓糖度检测模型可以更好地完成蓝莓糖度在线精准分析,该方法有望应用于蓝莓及其他果蔬内部品质检测。  相似文献   

11.
莲子是我国重要的药食同源食物,与莲子营养价值相当、便于食用的莲子粉备受消费者青睐。为保证莲子粉的品质,利用近红外光谱(NIRs)技术对掺杂小麦粉、玉米粉和地瓜粉的莲子粉进行鉴定,在样品类别已知下利用支持向量机(SVM)、最小二乘支持向量机(LS-SVM)、偏最小二乘法-判别分析(PLS-DA)模型进行判别,在样品类别未知下基于聚类算法进行判别。同时,对莲子粉中水分含量利用偏最小二乘(PLS)回归进行定量分析。结果表明,LS-SVM模型对纯莲子粉样品与掺入小麦粉、玉米粉和地瓜粉的莲子粉样品的判别率达到100%;基于聚类算法能够有效识别掺入5%地瓜粉、小麦粉和玉米粉的莲子粉样品;PLS模型对莲子粉中水分含量预测综合性能良好,其中经过标准化预处理得到模型效果最佳,其R2c,RMSEC,R2p和RMSEP分别达到0.973 2,0.111 5,0.969 5和0.118 9。近红外光谱技术能为隐蔽的莲子粉掺杂的鉴别以及莲子粉中水分含量监控提供一种快速、准确、无损检测的分析方法,为保证高档次莲子品质提供一种有益的思路。  相似文献   

12.
提出了一种基于最小二乘支持向量机(LS-SVM)的橄榄油掺杂拉曼快速鉴别方法。首先,收集若干己知类别的橄榄油样作为训练样本,获取其拉曼谱图,并对其谱图进行预处理和波段选择,进而构建LSSVM分类器;对于未知类别的油样,获取其拉曼谱图,并进行相应的预处理和波段选择,由LSSVM分类器获得鉴别结果。实验以7种已知的特级初榨橄榄油为基础,分别掺入4种其它植物油(大豆油、菜籽油、玉米油、葵花籽油),获得112个掺杂油样。将全部样本随机分成训练集和测试集,对测试集样本的预测实验结果表明,本文方法能有效鉴别橄榄油掺杂,且掺杂量最低检测限为5%。与其它分类方法相比,LSSVM分类法具有最佳的分类性能。该方法快速、简便,为橄榄油掺杂鉴别提供了一种全新的方法。  相似文献   

13.
传统食品掺假分析多集中于检测特定已知或者怀疑可能存在的掺假物,然而由于掺假形式的多样性以及新的掺假物不断出现,使得传统检测方法具有局限性。目前,全蛋粉作为鲜蛋理想替代品掺假现象十分严重,然而不管是国内还是国外,其掺假检测都鲜有研究。因此,为了探索一种快速检测全蛋粉掺假的方法,研究尝试使用最近快速发展起来的具有绿色、无损等优点的高光谱技术来检测全蛋粉掺假的可行性。从不同地区收集不同品牌的鸡蛋全蛋粉,按不同比例分别掺入淀粉、大豆分离蛋白、麦芽糊精以及三种掺假物的混合物进行试验样品的制备。样品进行光谱采集后,采用ENVI软件选取感兴趣区域(ROI)后提取出平均光谱。根据获得的光谱数据建立全波段下支持向量机(SVM)模型进行掺假的判别并采用偏最小二乘回归(PLSR)模型建立全波段与掺假浓度之间的关系。结果显示,采用径向基核函数所建立的SVM模型,其分类的正确率达到90%以上,基于PLSR建立掺假模型实际值与预测值相关系数R2P均高于0.90。为了简化模型,采用回归系数法(RC)及连续投影法(SPA)提取特征波长,根据特征波长下的光谱数据建立RC-PLSR和SPA-PLSR模型,结果显示,经简化的模型依然具有良好的性能,说明使用高光谱技术来检测全蛋粉掺假是可行且高效的。  相似文献   

14.
花椒是我国的八大调味料之一。目前花椒市场掺假现象较为多见,为实现掺假花椒粉的快速定性鉴别,采用了近红外光谱结合化学计量学方法进行了探讨。将麦麸粉、稻糠粉、玉米粉和松香粉以1 Wt/Wt.%的递增梯度分别掺入红花椒粉和青花椒粉中,制备掺假浓度范围为1~54 Wt/Wt.%的掺假花椒粉样品,以掺假花椒粉和纯花椒粉共462份样品依次采集其800~2 500 nm范围的漫反射近红外光谱。采用主成分分析法(PCA)对光谱数据进行分析,前3个主成分累计贡献率达98.72%,做出的得分图表明PCA法对掺假的花椒粉具有较好的区域划分。347份样本作为校正集,以特征谱区2 000~2 200 nm范围的257个采样点的光谱信号作为输入,采用判别偏最小二乘法(DPLS)和支持向量机(SVM)建立定性鉴别模型,经不同光谱预处理,对115份验证集样本进行预测,总体鉴别正确率在97.39%~100%之间,表明该方法是快速定性鉴别掺假花椒粉的一个有效手段。  相似文献   

15.
对掺入不同含量大豆油和菜籽油的鱼油进行鱼油掺假含量的可见-近红外光谱(Vis-NIR)研究。向3个不同品牌鱼油中分别掺入不同比例的大豆油,另外3个不同品牌中分别掺入不同比例的菜籽油,共获得300个样本。对所采集样本的光谱数据分别采用原始光谱,以及平滑,变量标准化(SNV),多元散射校正(MSC),一阶求导和二阶求导等预处理算法进行处理后,建立偏最小二乘回归(PLSR)模型。基于全波段光谱的鱼油中大豆油和菜籽油掺假含量预测的最优模型分别为全波段PLSR模型和MSC-PLSR模型,其预测相关系数(Rp)分别达到0.938 6和0.959 3。进一步采用连续投影算法(SPA)分析鱼油中大豆油和菜籽油掺假样品的光谱,并分别获得了11个和15个光谱特征波长变量。基于特征变量的PLSR模型的Rp分别为0.941 2和0.932 6。试验研究表明, 可以采用Vis-NIR技术实现对鱼油掺假物含量的检测。  相似文献   

16.
三七粉是三七的主要消费和商品形式,市场上存在以次充好、甚至是掺假的现象,由于是粉状物料,难以用肉眼判别,为了实现对不同质量等级的三七粉进行无损鉴别。将30头、40头、60头和80头的三七主根研磨成粉,制备样本。采用可见近红外高光谱成像系统(400.68~1 001.61 nm)采集4种不同头数三七粉,共计384个样品的高光谱图像,提取高光谱图像感兴趣区域(ROI)的平均光谱值作为样本原始光谱。将384个三七粉样本按2∶1的比例划分训练集和测试集。采用卷积平滑(SG)、多元散射校正(MSC)和标准正态变量变换(SNV)3种预处理方法对三七粉样本光谱信息进行预处理并建立支持向量机(SVM)分类模型,通过比较基于3种预处理方法的SVM模型测试集分类准确率,确定SNV为最优预处理方法。采用迭代保留信息变量(IRIV)、变量组合集群分析(VCPA)和变量组合集群分析混合迭代保留信息变量(VCPA-IRIV)3种特征选择方法提取SNV预处理后光谱的特征波长并建立基于特征光谱和原始光谱的SVM分类模型,通过比较基于3种特征选择方法得到的特征波长建立的SVM模型测试集分类准确率,发现将VCPA与IRIV相结合的VCPA-IRIV为最优特征选择方法。VCPA-IRIV提取了18个特征波长代替全光谱数据参与建模,该算法在降低模型复杂度的同时保持了模型的分类精度。为了提高模型的分类精度,采用引力搜索算法(GSA)对SVM模型中惩罚因子c和核参数g进行寻优,并与网格搜索(GS)的结果进行比较,结果表明,VCPA-IRIV-GSA-SVM模型分类效果最好,测试集分类准确率达到100%。可见,利用可见近红外高光谱成像对三七粉进行质量等级无损鉴别是可行的,为市场上三七粉的质量等级鉴别提供了参考。  相似文献   

17.
血红蛋白是人体的一项重要生理指标,浓度异常会导致人体产生各种疾病。红外光谱技术具有简单、无损、快速等优点,非常适合用于生理参数的定量分析。由于光谱背景复杂、有效信息弱,如何提取有效特征变量,构建精准定量模型是个难题。针对此问题,以血液样本和血红蛋白仿体溶液样本光谱数据为研究对象,采用SPXY法、 K_S法、 duplex法、等间隔划分法四种数据集划分方法划分数据并通过建模对比,优选出最佳数据集划分方法为SPXY法。遍历了SavitzkyGolay一阶求导滤波(S_G1)+小波变换、小波变换+S_G1、标准正态变量变换(SNV)+S_G1三种预处理方法,优选出SNV+S_G1预处理方法。结合串联思想,提出组合区间偏最小二乘法(SiPLS)与连续投影算法(SPA)串联的特征波长优选方法,构建SiPLS-SPA-PLS预测模型,用两组数据对模型进行验证,依据评价指标判断模型的优劣,并与全谱PLS, SPA-PLS和SiPLS三种定量模型相比较。实验结果表明:(1)使用SiPLS-SPA-PLS模型进行定量分析,血液样本的Rc,Rp, RMSEC和R...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号