首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocytes from adrenalectomized 48 h-starved rats responded to increasing glucose concentrations with a progressively more complete inactivation of phosphorylase. Yet no activation of glycogen synthase occurred, even in a K+-rich medium. Protein phosphatase activities in crude liver preparations were assayed with purified substrates. Adrenalectomy plus starvation decreased synthase phosphatase activity by about 90%, but hardly affected phosphorylase phosphatase activity. Synthase b present in liver extracts from adrenalectomized starved rats was rapidly and completely converted into the a form on addition of liver extract from a normal fed rat. Glycogen synthesis can be slowly re-induced by administration of either glucose or cortisol to the deficient rats. In these conditions there was a close correspondence between the initial recovery of synthase phosphatase activity and the amount of synthase a present in the liver. The latter parameter was strictly correlated with the measured rate of glycogen synthesis in vivo. The decreased activity of synthase phosphatase emerges thus as the single factor that limits hepatic glycogen deposition in the adrenalectomized starved rat.  相似文献   

2.
Summary In a previous report it was shown that EDTA inhibition of liver glycogen synthase phosphatase activity in preparations from normal, fed rats could be increased upon glucagon or cAMP treatment. This occurred without a change in the half-maximum inhibitory concentration of EDTA. Glucose administration to animals resulted in decreased EDTA inhibition. The inhibitory action of EDTA has been further characterized by comparing its action with that of other chelators (CDTA and EGTA) and examining the effects of various divalent cations on chelator inhibition. Both CDTA and EDTA which differ structurally were inhibitory at 5 mm concentrations whereas EGTA which is structurally similar to EDTA was not inhibitory at concentrations up to 10 mm. The lack of inhibition by EGTA could be explained by its weak affinity for Mg++ in the preparation. A comparison of CDTA and EDTA revealed that CDTA was a more potent inhibitor than EDTA (I0.5, 0.15 mm vs 0.3 mm). Glucagon and glucose treatment of rats resulted in changes in CDTA inhibition which closely paralleled those of EDTA. A large group of divalent cations were tested but only Mg++, Ca++, and Mn++ both prevented and reversed CDTA or EDTA inhibition. Fifty percent reversal using either chelator occurred at calculated free-metal ion concentrations of approximately 2 µm, 0.08 µm and 0.0004 µm, respectively. Thus, it is clear that EDTA inhibition is due to its chelation effect and is not due to a nonspecific anionic effect.  相似文献   

3.
4.
The kinetics of a synthase phosphatase reaction inhibited by ATP-Mg in a liver glycogen particle preparation were complex. In the presence of a physiological concentration of ATP-Mg, synthase phosphatase activity in the glycogen particle follows a biphasic course. Initially, the reaction was inhibited but later the reaction rate accelerated. The reaction was inhibited but the rate was constant in the presence of ATP-Mg with the addition of a physiological concentration of glucose 6-phosphate (Glc 6-P). Therefore, in most subsequent experiments Glc 6-P was added. The concentration of ATP-Mg at which 50% maximal inhibition (I0.5) occurred was approximately 0.1 mM in preparations obtained from rats given glucagon prior to being killed. In preparations from animals given glucose, the I0.5 was increased to 2.0 mM. The maximum inhibition was little changed in preparations from glucose- or glucagon-treated animals. Thus, administration of glucose in vivo reduced the sensitivity of the synthase phosphatase to ATP-Mg inhibition. Complexes of ATP with paramagnetic ions such as Co2+ and Mn2+ were less inhibitory than complexes with diamagnetic ions, including Ca2+ and Mg2+. Magnesium complexes of adenosine tetraphosphate and 5'-adenylimidodiphosphate also were inhibitory. Inhibition was independent of phosphorylase a and not a nonspecific, polyvalent anion effect. The best explanation for the distinctive effects of ATP-Mg in preparations from glucagon- and glucose-treated animals is that the respective treatments promote and stabilize different forms of synthase D or possibly synthase phosphatase with different affinities for ATP-Mg. These forms are interconvertible, as previously suggested, in studies employing EDTA (20).  相似文献   

5.
1. The mechanism that underlies the induction of glycogen synthesis in the foetal rat liver by glucocorticoids was reinvestigated in conditions where the accumulation of glycogen is either precociously induced with dexamethasone or inhibited by steroid deprivation. It appears that glucocorticoids act as the physiological trigger for glycogen synthesis by inducing both glycogen synthase (a known effect) and its activating enzyme, glycogen synthase phosphatase. 2. The activity of glycogen synthase phosphatase in adult liver stems from the interaction of two protein components [Doperé, Vanstapel & Stalmans (1980) Eur. J. Biochem. 104, 137--146]. Two independent experimental approaches indicate that the cytosolic 'S-component' is already well developed in the foetal liver before the onset of glycogen synthesis. The manifold glucocorticoid-dependent increase in synthase phosphatase activity during late gestation must be attributed to the specific development of the glycogen-bound 'G-component'.  相似文献   

6.
The liver glycogen particle contains constitutive glycogen-synthase phosphatase activity which is inhibited by ATP-Mg in a concentration-dependent manner within the physiological range (I0.5 = 0.1 mM). Therefore, we determined whether other nucleoside triphosphate-magnesium complexes also inhibit synthase phosphatase activity. UTP-Mg, CTP-Mg and GTP-Mg were all found to be inhibitory. The maximum inhibition was 85-90% which was greater than that for ATP-Mg. The I0.5 for UTP-Mg was comparable to that of ATP-Mg but it was greater for CTP-Mg and for GTP-Mg. At in vivo physiological concentrations, both UTP and ATP are possible inhibitors of synthase phosphatase activity. In the presence of a saturating concentration of ATP-Mg, added UTP-Mg increased the inhibition suggesting the presence of at least two distinct nucleotide binding sites. Substitution of calcium for magnesium in an ATP complex had no effect on the I0.5, but increased the maximum inhibition. The present studies also suggest that in the multistep conversion of synthase D to synthase I, ATP-Mg inhibition occurs early in the sequence. Addition of glycogen, a known inhibitor of synthase phosphatase activity, to a reaction mixture containing 3 mM ATP-Mg did not further inhibit synthase phosphatase activity when added at concentrations up to 22 mg/ml. The latter data suggest that the presence of a nucleoside triphosphate may desensitize the phosphatase to glycogen inhibition. ATP-Mg and, to a lesser extent, UTP-Mg and CTP-Mg all stimulated phosphorylase phosphatase activity but GTP-Mg did not.  相似文献   

7.
In glycogen particle suspensions prepared from fed rats given either glucagon or glucose in order to increase or decrease the phosphorylase a concentration, respectively, glucose stimulation of synthase phosphatase activity was observed. In preparations from glucagon-treated rats, addition of glucose stimulated synthase and phosphorylase phosphatase simultaneously and not sequentially. Synthase phosphatase stimulation was glucose concentration dependent even when phosphorylase a had been rapidly reduced to a low level. The estimated A0.5 for glucose stimulation of synthase phosphatase activity was 27 mM. An A0.5 for glucose stimulation of phosphorylase phosphatase activity could not be estimated since activity was still increasing with concentrations of glucose as high as 200 mM. In preparations from glucose-treated rats which contain virtually no phosphorylase a, glucose stimulation was still apparent but the A0.5 was increased modestly (36 mM). Stimulation of synthase phosphatase activity was specific for glucose. Several other monosaccharides and the polyhydric alcohol sorbitol were ineffective.  相似文献   

8.
Glycogen particle synthase phosphatase activity is stimulated by glucose with an A0.5 of approximately 27 mM. The A0.5 is higher than the usual concentrations present in the liver. However, in vitro, certain methylxanthines such as caffeine or theophylline reduce the glucose A0.5 to approximately 10 mM, a concentration well within the normal range of liver glucose concentrations. Methylxanthines do not affect the maximum stimulation by glucose (2.3-fold greater than control rate). The phosphatase reaction also is inhibited by ATP-Mg (I0.5 = 0.1 mM). In the present studies, we have determined the interaction of these effectors. The presence of ATP-Mg at a concentration of 3 mM only slightly reduced the maximal stimulation by glucose. The A0.5 for glucose was unaffected (24 mM). The synergistic effect of caffeine with glucose also was not changed by the presence of ATP-Mg. The A0.5 for glucose was reduced to 11 mM, similar to that in the absence of ATP-Mg. In addition, maximum stimulation by glucose was unchanged. Similar results were obtained when theophylline replaced caffeine. We conclude that the ATP-Mg binding site on either the phosphatase or its substrate, synthase D, does not influence the glucose and methylxanthine binding sites. Effectively, ATP-Mg increased the range over which glucose stimulates the phosphatase activity. In the presence of ATP-Mg, the maximum stimulation by glucose is approximately 7-fold; whereas, in the absence of ATP-Mg it is approximately 2.3-fold. Thus, ATP-Mg may serve to increase the sensitivity of the synthase phosphatase reaction to glucose regulation under in vivo conditions.  相似文献   

9.
Fasting newborn and growing young rats, though capable of synthesizing liver glycogen when fed, are, unlike adult fasted animals, insensitive to glucocorticoid stimulation of the rate of glucose and lactate incorporation into glycogen. Hormone resistance parallels a decreased liver capability for the synthase b to a conversion reaction up to 2 days after birth, after which the b to a transformation becomes adult type in nature. A comparison of the level of glucose 6-phosphate in liver to the effect of the activator on the synthase activity from newborn rat shows that the enzyme has a greater affinity toward the activator than comparable enzyme from the adult, suggesting the presence of an intermediate metabolite-regulated form of synthase in neonatal liver.  相似文献   

10.
11.
Rat liver glycogen synthase bound to the glycogen particle was partially purified by repeated high-speed centrifugation. This synthase preparation was labeled with 32P by incubations with cAMP-dependent protein kinase and cAMP-independent synthase (casein) kinase-1 in the presence of [γ-32P]ATP. The phosphorylated synthase was separated from other proteins in the glycogen pellet by immunoprecipitation with rabbit anti-rat liver glycogen synthase serum. Analysis of the immunoprecipitates by sodium dodecyl sulfate-gel electrophoresis showed that synthase subunits of Mr 85,000 and 80,000 were present in varying proportions. The 32P-labeled synthase in the immunoprecipitate was digested with trypsin, and the resulting peptides were analyzed by isoelectric focusing. Synthase bound to the glycogen particle was phosphorylated by cAMP-dependent protein kinase at more sites and by cAMP-independent synthase (casein) kinase-1 at less sites than when the homogeneous synthase was incubated with these kinases. Phosphorylation of synthase in the glycogen pellet by either cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1 did not cause a significant inactivation as has been observed when the homogeneous synthase was incubated with these kinases. Inactivation of synthase in the glycogen pellet, however, can be achieved by the combination of both kinases. This inactivation appears to result from the phosphorylation of a new site by cAMP-independent synthase (casein) kinase-1 neighboring a site previously phosphorylated by cAMP-dependent protein kinase.  相似文献   

12.
32P-labeled glycogen synthase specifically immunoprecipitated from 32P-phosphate incubated rat hepatocytes contains, in addition to [32P] phosphoserine, significant levels of [32P] phosphothreonine (7% of the total [32P] phosphoaminoacids). When the 32P-immunoprecipitate was cleaved with CNBr, the [32P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 "in vitro" (casein kinases I and II, cAMP-dependent protein kinase and glycogen synthase kinase-3). After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the "in vivo" phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase.  相似文献   

13.
Summary We have previously shown that synthase phosphatase activity was decreased in starved animals and was rapidly restored by insulin administration (1). In order to determine whether the decreased phosphatase activity was due to a decrease in phosphatase enzyme per se or to a change in the substrate, synthase D, phosphatase activity has been determined using purified synthase D substrate. Using purified heart or liver synthase D, phosphatase activity was lower in extracts from starved animals than in fed animals. Insulin administration rapidly increased phosphatase activity in extracts from the starved animals. The total amount of endogenous synthase D which was convertible to synthase I was lower in extracts from starve animals, but this was rapidly increased within 15 minutes following insulin administration. These data suggest that starvation and insulin have a direct effect on the phosphatase enzyme activity per se and probably on the substrate suitability of synthase D as well.  相似文献   

14.
15.
A liver glycogen pellet preparation previously found to contain synthase D phosphatase activity was shown to contain also phosphohistone phosphatase activity. Pellet phosphohistone phosphatase and synthase D phosphatase competed for the same substrates and appeared to be the same enzyme. ATP, a potent inhibitor, and G-6-P, a potent activator of the synthase phosphatase reaction, had little effect on the phosphohistone phosphatase reaction. These observations suggest that the ATP and G-6-P effects are relatively specific and are probably caused by binding to the synthase D substrate. The observed effects of NaCl and KCl were more complex. They stimulated phosphohistone phosphatase activity but strikingly inhibited synthase phosphatase activity. Sodium fluoride inhibited both reactions.  相似文献   

16.
17.
Synthase phosphatase, phosphorylase phosphatase and histone phosphatase in rat liver were measured using as substrate purified liver synthase D, phosphorylase a and 32P-labelled phosphorylated f1 histone, respectively. The three phosphatase enzymes had different sedimentation characteristics. Both synthase phosphatase and phosphorylase phosphatase were found to sediment with the microsomal fraction under our experimental conditions. Only 10% of histone phosphatase was in this fraction; the majority was in the cytosol. No change in histone phosphatase was observed in the adrenalectomized fasted rat whereas synthase phosphatase and phosphorylase phosphatase activities were decreased 5–10-fold. Fractionation of liver extract with ethanol produced a dissociation of the three phosphatase activities. When a partially purified fraction was put on a DEAE-cellulose column, synthase phosphatase and phosphorylase phosphatase both exhibited broad elution profiles but their activity peaks did not coincide. Histone phosphatase eluted as a single discrete peak. When the supernatant of CaCl2-treated microsomal fraction was put on a Sepharose 4B column, the majority of synthase phosphatase was found to elute with the larger molecular weight proteins whereas the majority of phosphorylase phosphatase eluted with the smaller species. Histone phosphatase migrated as a single peak and was of intermediate size. Synthase phosphatase was inhibited by phosphorylase a (Ki < 1 unit/ml) and phosphorylase phosphatase by synthase D (K1 ≈ units/ml). The inhibition of synthase phosphatase by phosphorylase a was kinetically non-competitive with substrate. Histone phosphatase activity was not inhibited by synthase D or by phosphorylase a. The above results suggest that different proteins are involved in the dephosphorylation of synthase D, phosphorylase a and histone in the cell.  相似文献   

18.
In normal fed rats, glycogen synthase D phosphatase activity in a glycogen pellet preparation was only partially inhibited (approximately 50%) by high concentrations of EDTA. However, the proportion of phosphatase activity inhibited by EDTA was markedly and rapidly (15 s) increased following glucagon or cAMP administration. Epinephrine administration did not alter the proportion of activity inhibited by EDTA. Glucose administration rapidly (2 min) reduced the proportion of synthase phosphatase activity inhibitable by EDTA. That is, the effect of glucose was just the opposite of that produced by glucagon or cAMP. Insulin administration had no effect on phosphatase activity. Synthase phosphatase activity assayed in the absence of EDTA was similar in all groups except for a moderate increase after glucose administration. Addition of Mg2+ completely reversed EDTA inhibition. Phosphorylase phosphatase activity in each group was not modified by addition of EDTA, although the percentage of phosphorylase in the alpha form was higher in glucagon-treated and lower in the glucose-treated animals as expected. These data suggest the presence of rapidly interconvertible forms of either synthase phosphatase or its substrate synthase D, detectable as a change in EDTA inhibitability and subject to glucose and glucagon control.  相似文献   

19.
Rat liver glycogen synthase was purified to homogeneity by an improved procedure that yielded enzyme almost exclusively as a polypeptide of Mr 85,000. The phosphorylation of this enzyme by eight protein kinases was analyzed by cleavage of the enzyme subunit followed by mapping of the phosphopeptides using polyacrylamide gel electrophoresis in the presence of SDS, reverse-phase high-performance liquid chromatography and thin-layer electrophoresis. Cyclic AMP-dependent protein kinase, phosphorylase kinase, protein kinase C and the calmodulin-dependent protein kinase all phosphorylated the same small peptide (approx. 20 amino acids) located in a 14 kDa CNBr-fragment (CB-1). Calmodulin-dependent protein kinase and protein kinase C also modified second sites in CB-1. A larger CNBr-fragment (CB-2) of approx. 28 kDa was the dominant site of action for casein kinases I and II, FA/GSK-3 and the heparin-activated protein kinase. The sites modified were all localized in a 14 kDa species generated by trypsin digestion. Further proteolysis with V8 proteinase indicated that FA/GSK-3 and the heparin-activated enzyme recognized the same smaller peptide within CB-2, which may also be phosphorylated by casein kinase 1. Casein kinase 1 also modified a distinct peptide, as did casein kinase II. The results lead us to suggest homology to the muscle enzyme with regard to CB-1 phosphorylation and the region recognized by FA/GSK-3, which in rabbit muscle is characterized by a high density of proline and serine residues. A striking difference with the muscle isozyme is the apparent lack of phosphorylations corresponding to the muscle sites 1a and 1b. These results provide further evidence for the presence of liver- and muscle-specific glycogen synthase isozymes in the rat. That the isozymes differ subtly as to phosphorylation sites may provide a clue to the functional differences between the isozymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号