首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two ternary alkali earth silver bismuthides, CaAgBi and BaAg1.837Bi2, have been synthesized by solid-state reactions of the corresponding metals in welded Nb tubes at high temperature. Their structures have been established by single-crystal X-ray diffraction studies. CaAgBi crystallizes in the hexagonal space group P63mc (No.186) with cell parameters of a = b = 4.8113(4) Å, c = 7.8273(9) Å, V = 156.92(3) Å3, and Z = 2. BaAg1.837Bi2 belongs to tetragonal space group P4/nmm (No.129) with cell parameters of a = b = 4.9202(2) Å, c = 11.628(1) Å, V = 281.50(3) Å3, and Z = 2. The structure of CaAgBi is of the LiGaGe type, and features a three-dimensional four-connected (3D4C) anionic network with Ca2+ encapsulated in the channels formed by [Ag3Bi3] six-membered rings. BaAg1.837Bi2 is isostructural with CaBe2Ge2, a variant of the tetragonal ThCr2Si2-type structure. Its structure exhibits a three-dimensional anionic network built of (0 0 1) and (0 0 2) puckered [Ag2Bi2] layers interconnected via additional Ag–Bi bonds along the c-axis. BaAg1.837Bi2 is metallic based on band structure calculations.  相似文献   

2.
The structural properties of the compounds in the tin-rich part of the dysprosium–tin system have been studied by X-ray powder diffraction. The crystal structures of six compounds DySn2+x (0 < x < 1) have been characterized. There are four compounds with known structural types: DySn2 with the ZrSi2 structure, Dy3Sn7 with the Gd3Sn7 structure, Dy2Sn5 with the Er2Ge5 structure, DySn3 with the DyGe3 structure and two compounds characterized by new body-centred orthorhombic types (Immm): Dy5Sn11 (a = 4.411 Å, b = 42.50 Å and c = 4.328 Å) and Dy5Sn13 (a = 4.341 Å, b = 48.05 Å and c = 4.405 Å) which result from various insertions of AuCu3 and Po slabs into the ZrSi2 structure. The relationships and structural evolution are discussed.  相似文献   

3.
The crystal structure of new ternary R3Si1.25Se7 (R = Pr, Nd and Sm) compounds (Dy3Ge1.25S7 structure type, Pearson symbol hP22.5, space group P63, a = 1.05268 (3) nm, c = 0.60396 (3) nm, RI = 0.0897 for Pr3Si1.25Se7; a = 1.04760 (3) nm, c = 0.60268 (3) nm, RI = 0.0891 for Nd3Si1.25Se7; a = 1.04166 (6) nm, c = 0.59828 (6) nm for Sm3Si1.25Se7) was determined using X-ray powder diffraction. The nearest neighbours of the R and Si atoms are exclusively Se atoms. The latter form distorted trigonal prisms around the R atoms, octahedra around the Si1 atoms and tetrahedra around the Si2 atoms. Tetrahedral surrounding exists for Se1 and Se3 atoms. Six neighbours surround every Se2 atom.  相似文献   

4.
The crystal structure of La5Ti4GaO17 compound synthesized by heat-treatment of the co-precipitated hydroxy-oxalates has been determined by the X-ray powder diffraction. It was found that crystal structure of La5Ti4GaO17 belongs to the CaLa4Ti5O17-type structure (space group Pmnn, a = 0.3912(1) nm, b = 3.128(1) nm, c = 0.5523(1) nm, Z = 2). The final RW value is equal to 0.081 for 169 independent reflections.  相似文献   

5.
A new mixed-valence iron phosphate Na1.25Mg1.10Fe1.90(PO4)3 has been synthesized as single crystals by a flux technique and its structure has been refined from X-ray data to a residual R1 = 0.032. The compound crystallizes in the monoclinic space group C2/c with the parameters: a = 11.7831(3) Å, b = 12.4740(3) Å, c = 6.3761(2) Å, β = 113.643(2)° and Z = 4. The structure belongs to the alluaudite structural type, and thus it obeys to the X(2)X(1)M(1)M(2)2(PO4)3 general formula. The X(2) and X(1) sites are occupied by sodium while the M(1) and M(2) sites feature a statistical distribution of iron and magnesium.

Additional information about the cation distribution has been extracted from a Mössbauer spectroscopy study which confirmed the mixed valency of the compound. A magnetic susceptibility study has also been undertaken and has shown the compound to be antiferromagnetic with a Neel temperature of about 35 K.  相似文献   


6.
Two polymorphs (I and II) of Ba3Sn2P4 have been found in the same preparative batch. Both compounds crystallize in the centrosymmetric monoclinic space group P21/c (#14, a = 7.8669(2) Å, b = 19.2378(5) Å, c = 7.8472(2) Å, β = 112.77(1)°, V = 1095.06(5) Å3, Z = 4, and R/wR = 0.0303/0.0710 for I; a = 7.8771(3) Å, b = 19.4099(7) Å, c = 7.7040(3) Å, β = 112.44(1)°, V = 1088.67(7) Å3, Z = 4, and R/wR = 0.0224/0.0415 for II). Both structures consist of one-dimensional chains separated by Ba2+ cations. The isolated chain consists of condensed ethane-like [Sn2P6] units. In polymorphs I and II, the condensation and connectivity of the [Sn2P6] units are quite different. While [Sn2P6] units form four- and six-membered rings in I, they form the five-membered rings in II. The electronic structure calculations indicate that semiconducting behavior is expected for both compounds.  相似文献   

7.
The Nd11Pd4In9 compound was prepared by arc melting of pure metals under an argon atmosphere. Crystal structure was refined from X-ray single crystal diffractometer data (space group Cmmm, a = 14.843(3), b = 22.284(3), c = 3.7857(6) Å, Z = 2, RI = 0.0584, 653 F2 values). It has own structure type and together with Mn2AlB2, Cr3AlB4, Mo2FeB2 and Lu5Ni2In4 structure types belongs to homological series based on AlB2 and CsCl structure types with common formula Rm+nM2nXm.  相似文献   

8.
A new ternary compound Ce(Au,Sb)2, with a homogeneity range has been observed from X-ray powder diffraction of as cast alloys, a = 4.743–4.712 Å, c = 3.567–3.768 Å. Its crystal structure was investigated by X-ray diffraction from Ce(Au1−xSbx)2 (x = 0.266) single crystal: CAD-4 automatic diffractometer, Mo K radiation, a = 4.7256(6) Å, c = 3.6711(6) Å, P6/mmm space group, V = 70.997(17) Å3, Z = 1, ρ = 10.732 Mg/m3, μ = 76.369 mm−1, R1 = 0.0415, wR2 = 0.0793 for 99 reflections with I > 2σ(I0). The coordination polyhedron of X (X = 0.734Au + 0.266Sb) atom is a full-capped trigonal prism [XCe6X3X2]. Ce atom is coordinated by 14 atoms: [CeX12Ce2]. The compound is isotypic with UHg2 structure, a deformation derivative of AlB2 structure type. It forms isostructural compounds with La and Pr.  相似文献   

9.
A new langasite type single crystal Ca3NbGa3Si2O14 (CNGS) was grown by Czochralski (CZ) method. The structure of CNGS crystal was determined by X-ray powder diffraction, the lattice parameters were a=0.8087 ± 0.0001 nm, c=0.4974 ± 0.0002 nm, V=0.2817 ± 0.0002 nm3; The congruency of CNGS was examined by measuring the chemical composition of the grown crystal by quantitative X-ray fluorescent (XRF) analysis. The melting point of CNGS crystal was measured by using the differential scanning calorimetry (DSC). Dielectric properties of (1 1 0) wafer plate were studied in the temperature range from 298.15 to 873.15 K; the frequency dependence of dielectric loss in the frequency range 10 Hz–13 MHz was measured.  相似文献   

10.
A new ternary compound of composition LaMg2Ni has been found and investigated with respect to structure and hydrogenation properties. It crystallizes with the orthorhombic MgAl2Cu type structure (space group Cmcm, a=4.2266(6), b=10.303(1), c=8.360(1) Å; V=364.0(1) Å3; Z=4) and absorbs hydrogen near ambient conditions (<200 °C, <8 bar) thereby forming the quaternary metal hydride LaMg2NiH7. Neutron powder diffraction on the deuteride revealed a monoclinic distorted metal atom substructure (LaMg2NiD7: space group P21/c, a=13.9789(7), b=4.7026(2), c=16.0251(8) Å; β=125.240(3)°, V=860.39(8) Å3; Z=8) that contains two symmetry independent tetrahedral [NiD4]4− complexes with Ni–D bond lengths in the range 1.49–1.64 Å, and six Danions in tetrahedral metal configuration with bond distances in the ranges 1.82–2.65 Å (Mg) and 2.33–2.59 Å (La). The compound constitutes a link between metallic ‘interstitial’ hydrides and non-metallic ‘complex’ metal hydrides.  相似文献   

11.
In our investigation of Co-rich alloys in the ternary U–Co–Sn system, we have identified three intermetallic compounds with composition UCo2Sn, UCo4Sn and UCo5Sn, respectively. The existence and the crystal structure of the first compound, already known in the literature, have been confirmed, while the latter two compounds have been identified for the first time. The crystal structure of these compounds was determined by X-ray diffraction methods, performed both on powders (all samples) and single crystals (UCo4Sn and UCo5Sn). The crystal data are as follows (lattice constants from Guinier powder patterns): UCo2Sn [UPd2Sn-type, orthorhombic, oP16-Pnma, a = 9.402(3), b = 4.321(1), c = 6.615(2) Å], UCo4Sn [MgCu4Sn-type, cubic, , a = 6.992(2) Å] and UCo5Sn [CeCu4.38In1.62-type, orthorhombic, oP56-Pnnm, a = 10.250(1), b = 16.012(2), c = 4.837(1) Å]. The physical properties of the compounds have been studied by electric transport (1.5–300 K), heat capacity (1.8–40 K) and magnetic measurements (1.8–300 K). The magnetisation data reveal weakly paramagnetic behaviour (with weak low temperature upturn due to parasitic impurity phases) in all the three alloys and absence of long-range magnetic ordering, despite the presence of uranium and a substantially high concentration of cobalt. The results for UCo2Sn are in agreement with earlier reports in the literature. The magnitudes of the coefficients of the linear term in the heat capacity and the T2 term in the low temperature resistivity track the room temperature magnetisation.  相似文献   

12.
The subsolidus phase relationships of ternary system Na2O–ZnO–WO3 have been investigated by X-ray diffraction (XRD) and differential thermal analyzer (DTA). All the samples were synthesized in the temperature range from 530 to 850 °C in air. There are one ternary compound and five binary compounds in the Na2O–ZnO–WO3 system, which can be divided into eight three-phase regions. The crystal structure of the ternary compound Na3.6Zn1.2(WO4)3 is determined by single-crystal structure analysis method. It belongs to triclinic system with space group and lattice constants a = 7.237 (5) Å, b = 9.172 (6) Å, c = 9.339 (6) Å and  = 94.920 (4)°, β = 105.772 (9)°, γ = 103.531 (8)°, Z = 2. DTA analyses indicate that the compound Na2WO4 is not suitable to be the flux for ZnO crystal growth below 1250 °C, since no liquidus was observed in the system before 1250 °C.  相似文献   

13.
The magnetic properties of DyFe10−xNixSi2 compounds with x = 0, 1, 2, 3, 4, 6, 9 and 10 have been investigated by means of X-ray diffraction and magnetic measurements. Substitution of Ni for Fe leads to a decrease in the lattice constants a, c and the unit-cell volume V. The Curie temperature reaches a maximum of 590 K at x = 2, then decreases strongly for x ≥ 2. The spin reorientations are observed for the compounds with x = 0, 1, 2 and 3. The spin reorientation temperature decreases strongly from 255 to 60 K as the Ni content is increased from x = 0 to 3. Below the spin reorientation temperature, the compounds exhibit ferrimagnetic ordering. For the Ni-rich compounds with x = 9 and 10, the magnetization of the Dy sublattice decreases strongly since the magnetization of the Dy sublattice is strongly affected by the molecular field produced by the 3d sublattice.  相似文献   

14.
The crystal structures of the Ag4HgGe2S7 and Ag4CdGe2S7 compounds were investigated using X-ray powder diffraction. These compounds crystallize in the monoclinic Cc space group with the lattice parameters a=1.74546(8), b=0.68093(2), c=1.05342(3) nm, β=93.398(3)° for Ag4HgGe2S7 and a=1.74364(8), b=0.68334(3), c=1.05350(4) nm, β=93.589(3)° for Ag4CdGe2S7. Atomic parameters were refined in the isotropic approximation (RI=0.0761 and RI=0.0727, respectively).  相似文献   

15.
Two novel polyphosphides, NaP5 and CeP5, were prepared in a BN crucible by the reaction of elemental components under a high pressure of 3 GPa at 800–950 °C. The X-ray structural analysis showed that NaP5 crystallizes in an orthorhombic space group Pnma with a=10.993(2) Å, b=6.524(1) Å, c=6.903(1) Å, Z=4 and CeP5 in the monoclinic group P21/m with a=4.9143(5) Å, b=9.6226(8) Å, c=5.5152(4) Å, β=104.303(6)°, Z=2. The crystal structure of NaP5 consists of a three-dimensional framework 3[P5]1− constructed by P---P bonds among four crystallographically inequivalent phosphorus sites, with large channels hosting the sodium cations, while CeP5 is a layered compound containing 2[P5]3− polyanionic layers that are separated by Ce3+ ions. NaP5 exhibits the diamagnetic behavior, while the temperature-dependent magnetic susceptibility of CeP5 essentially follows the Curie–Weiss law.  相似文献   

16.
Results of a powder X-ray diffraction investigation of new ternary compounds are reported. The compounds Y6CoBi2 [a=0.8312(1) nm, c=0.4144(1) nm], Ho6CoBi2 [a=0.8246(2) nm, c=0.4095(1) nm], and Tm6CoBi2 [a=0.8155(2) nm, c=0.4066(1) nm] crystallize in the hexagonal Zr6CoAs2-type structure (space group P6b2m No. 189). The Zr6CoAs2-type structure is a superstructure of the Fe2P-type structure.  相似文献   

17.
The crystal structure of the monoclinic phase η-Al11Cr2 of the space group C2/c, a ≈ 1.76 nm, b ≈ 3.05 nm, c ≈ 1.76 nm, β ≈ 90° [L.A. Bendersky, R.S. Roth, J.T. Ramon, D. Shechtman, Metall. Trans. A 22A (1991) 5] has been determined by single-crystal X-ray diffraction. The structure model, refined to a final R value of 0.0441, has the composition of Al83.8Cr16.2. a = 1.77348(10) nm, b = 3.04555(17) nm, c = 1.77344(10) nm, monoclinic angle β = 91.0520(12)°. There are 80 (66Al + 14Cr) independent atomic positions in a unit cell, of which all Cr atom sites and 8 Al atom sites have icosahedral coordination. These icosahedra are interconnected forming icosahedral chains along , (1 0 1) icosahedral layer blocks as well as a three-dimensional icosahedral structure.  相似文献   

18.
A new Mg-containing quaternary nitride, Sr3GeMgN4, was obtained as single crystals from constituent elements in molten Na. It crystallizes in space group Pnna (No. 52) with a=5.939(1) Å, b=10.320(2) Å, c=9.618(2) Å, and Z=6. It is isostructural with Sr3Ga2N4, both of which contain one-dimensional chains of edge-sharing tetrahedra.  相似文献   

19.
Single crystals of KCr0.8Al0.2Mo2O8 were prepared and investigated by the X-ray diffractometer technique. It shows a structure type related to trigonal KAIMo2O8, monoclinic NaCrMo2O8 or orthorhombic KInMo2O8, space group C2h6C2/c; a=17.445 Å, b=5.649 Å, c=8.997 Å, β=119.37°; Z=4. KCr0.8Al0.2Mo2O8 is characterized by isolated MoO4 tetrahedra, isolated (Cr/Al)O6 octahedra and a distorted square antiprism around K+. The crystal structure is discussed with respect to those of related compounds.

Zusammenfassung

Einkristalle von KCr0.8Al0.2Mo2O8 wurden synthetisiert und mit Vierkreisdiffraktometertechnik röntgenographisch untersucht. Sie zeigen einen mit trigonal-KA1Mo2O8, monoklin-NaCrMo2O8 oder orthorhombisch-KlnMo2O8 verwandten Strukturtyp, Raumgruppe C2h6C2/c; a=17,445 Å, b=5,649 Å, c=8,997 Å, β=119,37°; Z=4. KCr0.8Al0.2Mo2O8 zeichnet sich durch isolierte MoO4-Tetraeder, isolierte (Cr/Al)O6-Oktaeder und ein verzerrtes quadratisches Antiprisma um K+ aus. Die Kristallstruktur wird mit solchen verwandter Verbindungen diskutiert.  相似文献   


20.
The hydrothermal reaction of 2,5-pyridinedicarboxylic acid (H2PDC), diethylene triamine and In(NO3)3·4.5H2O gave rise to a two-dimensional (2D) coordination polymer In(OH)(2,5-PDC). This compound crystallizes in the orthorhombic space group Iba2, with cell parameters, a = 12.656(3) Å, b = 20.114(4) Å, c = 6.2216(1) Å, V = 1583.9(5) Å3 and Z = 8. Its structure contains one-dimensional In–O–In–O– chains, which are further linked by 2,5-PDC ligands into a 2D supramolecular neutral framework. The adjacent 2D layers are parallel with each other and construct a three-dimensional framework via hydrogen bands. At room temperature, the compound exhibits intense photoluminescence. On the basis of the results of TG/DTA analyses, the structure is thermally stable up to 390 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号