首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The piston assembly (piston ring and cylinder bore) is one of the key parts of the internal combustion (IC) engine. Its performance will directly determine the performance of the whole engine. The piston assemblys tribological performance will be influenced by both its mechanical properties and the tribochemical interactions that take place on their surfaces. In this paper, three kinds of advanced stainless steel piston rings with a single nitrided layer, CrN coating on the nitrided layer and a B4C and CrN binary-layer coating on the nitrided layer, respectively, were employed. Their frictional behavior and wear performance, when sliding against the cast iron cylinder bore materials lubricated with two kinds of GF-3 category mineral-based engine oils (one of them blended with MoDTC friction modifier), were investigated on a SRV tribotester. The test conditions were set and maintained to simulate engine-operating conditions. SEM (Scanning Electron Microscopy) and EDX (Energy Dispersive X-ray spectroscopy) were employed to characterize the morphology and elemental composition of the wear tracks. Tribotests and analysis results indicate that changes in both the mechanical properties of the tribomate (piston coatings) and tribochemical interactions (formulation of engine oils) have an impact on the tribological performance of the piston assembly. Tribochemical interactions will have a more obvious influence on friction coefficients while the mechanical properties of the tribomate have a more obvious influence on wear.  相似文献   

2.
Increasing environmental awareness and demanding low energy consumption are of the top priorities for future vehicles manufacturing companies. This can be achieved by reducing wear and friction of engine components, so that its efficiency and lifetime can be increased. Surface treatments and coatings contribute to a better lubrication with oils and can participate significantly in achieving these goals. In this paper, diamond-like carbon (DLC) coating has been incorporated to the vehicle piston rings with different RF powers using magnetron sputtering method. The tribological properties like wear and coefficient of friction have been analysed using Pin-on-Disk tribometer. Micro-hardness and nano-hardness of the coated piston rings were characterized by micro-indentor and nano-indentation processes. Surface microstructure and elemental compositions were observed using Scanning Electron Microscopy. Experimental results demonstrated that the DLC coating shows lower wear and friction under similar operating conditions as compared to uncoated piston rings. Thus, usage of DLC coating has enhanced the engine life time. Silicon interlayer has also been applied between nitrided piston rings and DLC layer in order to have better coating adhesion. The properties of the interlayer are not studied but usage of it is found to protect DLC coating from delamination.  相似文献   

3.
Tribocarbonisation of a fully formulated synthetic engine oil, an API SJ/SAE 5W‐30 containing an organic molybdenum friction modifier, was investigated in an Optimal SRV® tribotester, with a Mo‐coated piston ring and a cast iron cylinder bore tribopair in lubricated sliding contact and under stepwise heating conditions. The friction characteristics were determined by the friction coefficient curve which showed that two local minimum values occurred as the temperature increased stepwise. The local minimum friction coefficient at the lower temperature of 290°C was the result of the formation of MoS2 and MoO3, tribochemically generated by MoDTC and ZDTP. For the other local minimum friction coefficient at the higher temperature of 400°C, FT‐IR and Raman spectroscopic examinations of the worn tracks on the cylinder bore samples indicated that tribopyrolysis of the oil components and simultaneous polycondensation into carbonaceous species had occurred. Detailed Raman analyses showed that the carbonaceous species included a disordered phase and an ordered phase characterised, respectively, by the D‐line (1370 cm−1) and G‐line (1580 cm−1). The peak positions and sizes of the graphite crystallites involved varied according to temperature, and were related to the specific points on the friction coefficient versus temperature curve. Tribochemistry could enhance pyrolysis of the oil and facilitate the production of the carbonaceous species and growth of the graphite crystallites.  相似文献   

4.
CrN 活塞环涂层的磨擦学性能   总被引:1,自引:0,他引:1  
以PVD方法在不锈钢渗氮活塞环基体上沉积了厚约30 μm的CrN涂层.采用2种GF-3等级的全配方发动机油作为润滑剂,在SRV试验机上,对比了具有/没有CrN涂层的不锈钢渗氮活塞环的摩擦学性能.试验结果表明,CrN涂层能使摩擦因数数较快的稳定且数值较低,同时活塞环及其对磨缸套的磨损量也大大降低,对磨缸套的磨损量减少了80%以上.SEM分析结果表明,由于CrN涂层具有较高的硬度和较低的表面粗糙度,可以降低磨粒磨损,且能使对磨的缸套试样较快地与之适配,从而促进了摩擦反应膜的形成和扩展,是摩擦因数和磨损量降低的主要原因.  相似文献   

5.
It has been recognised that a large part of the top piston ring wear of an ic engine takes place in boundary lubrication around top dead centre (tdc) position. A quantitative assessment of the friction behaviour using actual piston ring and cylinder liner under conditions close to tdc has been made. The factors responsible for wear under these conditions have been identified as surface temperature, peak combustion pressure, total energy on the wearing surfaces and other physical properties of the material under sliding  相似文献   

6.
李辉  孙日超  魏琪  栗卓新 《中国机械工程》2013,24(10):1408-1412
活塞环面临着极为严重的磨损问题,目前工业界广泛采用涂层技术来提高其耐磨性。对近年来活塞环表面耐磨涂层制备技术及相关材料进行了综述,分析了活塞环表面摩擦磨损机理的研究成果及存在的问题,总结了相关磨损实验装置的研究进展。  相似文献   

7.
利用SRV高温摩擦磨损试验机研究了二烷基二硫代甲酸钼(MoDTC)对渗氮活塞环/铸铁缸套在ILSACGF-3发动机油润滑条件下的摩擦学性能的影响。结果表明,MoDTC能与GF-3全配方发动机油中的ZDTP/磺酸钙添加剂体系产生协同作用,在活塞环和缸套表面生成减摩和抗磨的摩擦反应膜,从而显著降低并在较长时间内保持低摩擦系数(最低0.03),同时缸套的磨损降低50%以上。  相似文献   

8.
A previously developed piston ring lubrication model has been further extended so that the piston ring frictional losses can be predicted in both hydrodynamic lubrication and metal-to-metal contact regions for various engine operating conditions. Ring friction results for two engine types are presented for both hot motoring and engine firing conditions. The hot motoring predictions were found to be in good agreement with tests. Results show that when the engine is motored, piston ring friction losses in the hydrodynamic lubrication region predominate. If the engine is fired, the losses in the metal-to-metal contact region become dominant due to high gas pressure and temperature effects. Ring friction loss can be significantly reduced by using low tension rings with a correct ring sliding face profile.  相似文献   

9.
李楠  车银辉  李洋 《润滑与密封》2022,47(8):141-149
大缸径、长冲程的大功率柴油机的活塞环-缸套摩擦副易发生异常磨损,使柴油机动力性能丧失,甚至发生拉缸等重大事故,通过先进的表面处理技术可显著改善活塞环-缸套摩擦副的润滑条件,提高活塞环-缸套摩擦副的摩擦学性能。采用阴极电弧离子镀技术在铬-陶瓷复合镀(CKS)活塞环表面制备厚度为7 μm的DLC薄膜,研究CKS活塞环表面的DLC薄膜在柴油机模拟工况下的摩擦学性能。结果表明:在干摩擦、室温贫油和高温贫油的工况下,CKS活塞环表面的DLC薄膜可以显著减小活塞环-缸套摩擦副对摩的摩擦因数,降低缸套的磨损;摩擦过程中DLC薄膜与润滑油的协同润滑作用以及DLC薄膜的石墨化是改善活塞环-缸套摩擦副摩擦学性能的主要原因。  相似文献   

10.
主要介绍了活塞环高度测量器具的选择以及新型活塞环高度测微仪的结构和原理。  相似文献   

11.
在活塞环缺陷检测过程中,数据采集是缺陷分析处理的第一步,图像质量的优劣直接影响后续图像处理的准确性。相机的曝光时间以及相机与活塞环之间的相对运动速度直接影响图像的质量。实验从曝光时间与转台转速两个方面着手,应用图像质量评价函数分析获取的图片,得到适合的曝光时间及转台转速,作为整个活塞环缺陷检测系统的实验基础。  相似文献   

12.
《Lubrication Science》2017,29(4):241-254
Friction and wear behaviour of different concentrations of hex‐boron nitride (h‐BN) nanoparticles in engine oil of grade SAE 20W50 were studied at various loads. These tribological studies were conducted using a four‐ball wear test machine and a pin‐on‐disc universal tribometer. Anti‐wear properties of SAE 20W50 + h‐BN were studied on the four‐ball wear test machine as per ASTM D4172 standard. Friction and wear properties of SAE 20W50 + h‐BN on piston ring and cylinder liner tribo‐pair were studied using the universal tribometer. Nanoparticles of h‐BN mixed in lubricant showed excellent tribological performance. In most of the cases, h‐BN nanoparticles as additive reduced the wear loss by 30–70% at various loads. The minimum value of coefficient of friction (0.0401) was found with SAE 20W50 + 3 wt% of h‐BN at normal load of 100 N. Scanning electron microscopy and Raman spectroscopy were used for characterisation of h‐BN and wear scars. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
聚合物复合材料自润滑体系内外因素的摩擦学相互作用   总被引:1,自引:1,他引:0  
从聚合物基复合材料在不同无润滑工况下的设计角度,讨论了高温、高压、高速、对偶、气体介质等外部因素对不同材料摩擦磨损性能的影响,分析了摩擦磨损机制,分析得出:由于填料、聚合物基体、对偶、工作介质之间存在着复杂的非线性相互作用,摩擦化学反应的程度与类型不同,不同填料填充聚合物基复合材料都有各自适用的摩擦系统,没有任何一种材料能适用于所有摩擦系统;指出目前摩擦学理论多建立在常温低压低速体系下,这与工程应用实际相脱节,对于复合材料在极端工况下的摩擦学机制、内外因素相互作用的研究,还有待进一步深入展开。  相似文献   

14.
A theoretical analysis is presented of the mixed lubrication of a piston ring pack. The analysis comprises Patir and Cheng's average flow model and Greenwood and Tripp's asperity interaction model, and is developed to consider the shear thinning effect of a non‐Newtonian fluid, multigrade lubricant. The friction characteristics of the piston ring pack for both monograde and multigrade lubricants are investigated. It is found that a decrease in the lubricant viscosity is effective in reducing the friction loss, although this increases the boundary friction at the beginning of the expansion stroke. The friction characteristics are markedly affected by the shear thinning effect when multigrade lubricants are used.  相似文献   

15.
Liu  K.  Liu  X.J.  Gui  C.L. 《Tribology Letters》1998,5(4):309-312
The scuffing failure phenomenon of piston ring–cylinder liner is studied theoretically and experimentally. The load and bulk temperature when scuffing failure occurs are measured under different engine speed, lubricant, and environmental temperature in a bench test. Based on the experimental results, the asperity capacity when scuffing occurs is evaluated. Surface contact temperature is determined with the measured bulk temperature and the surface flash temperature calculated by Blok theory. The scuffing failure threshold of piston ring–cylinder liner is established by using specific oil film thickness. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Design of piston rings is a very crucial subject in the field of internal combustion engines. In the present paper, a numerical model is created using the Navier–Stokes equations. Fluid–structure interaction analysis is performed in order to calculate the structural integrity of the ring for several engine operational conditions and texturing patterns. This paper illustrates the hydrodynamic friction force under various surface artificial texturing in terms of spherical and rectangular microdimples. Piston ring stress analysis is also investigated due to gas leakage. Results show a substantial reduction of the friction using rectangular texturing and less reduction using spherical texturing. The rectangular microdimple parameters were considered to obtain a better friction reduction with the following configurations: Hd = 4 µm, ρτ = 0.61, λ = 20 and s = 0.004. Each rectangular texture cell is defined by the dimple depth, Hd; the texture density, ρτ; the dimple aspect ratio, λ; and the relative dimple depth, s. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The addition of friction modifiers to crankcase lubricants has been shown to significantly reduce the mechanical losses of critical components in internal combustion (ic) engine; thereby improving fuel economy.In this study the friction and wear of a piston ring/cylinder bore material combination was studied using a pin-on-plate laboratory tribo-test machine developed to reproduce the wear mechanisms encountered in an ic engine. Two lubricants were evaluated: (i) a standard SAE 30 grade diesel formulation, and (ii) the same formulation with the addition of a 5% soluble MoS2 friction modifier.Analysis of the wear results identified three periods of wear: (1) running-in, (2) transient wear and (3) terminal wear. Throughout this study particular emphasis has been placed on the simulation of the wear mechanisms occurring within engines. Surface analysis confirmed that both abrasive wear and delamination wear was produced.Friction benefits attributable to the addition of MoS2 friction modifier were obtained. However, under specific conditions the wear rate increased due to increased abrasion of the plate.  相似文献   

18.
将普通CD40润滑油作为基础润滑油,在3种不同的载荷作用下,对含有金属陶瓷添加剂润滑油对汽缸套-活塞环摩擦磨损特性的影响进行了模拟试验研究,并与实际使用的普通CD40润滑油的试验结果进行了比较。研究结果表明,汽缸套-活塞环摩擦副在这种添加剂作用下,其磨损失重及摩擦因数都大幅度降低。摩擦副表面扫描电镜分析结果也表明,这种添加剂使摩擦表面更光滑,其本身具有表面自修复作用。  相似文献   

19.
纳米SiC对半金属摩擦材料性能的影响   总被引:2,自引:0,他引:2  
通过对比试验,研究纳米SiC对半金属摩擦材料性能的影响。试验表明,在半金属材料中,用纳米SiC代替普通的SiC粉体,摩阻材料的摩擦系数并没有明显的改善,而磨损率却大大地增加。借助扫描电镜(SEM)对混合粉体和摩擦表面的观察以及试验数据的分析,找到引起磨损增大的原因。  相似文献   

20.
在内燃机实际运行中,润滑油的粘度直接影响到润滑油膜的状态,因而活塞环在缸套中不同位置时的摩擦、润滑状态各不相同。文中以缸套活塞环为研究对象,建立了润滑计算模型,并运用该模型对缸内压力、温度、油膜厚度和摩擦系数进行了分析。结果表明,润滑油膜厚度和摩擦系数随转速改变而发生变化,而剪切稀化导致润滑油粘度减小是引起该变化的主要原因。最后,通过对计算结果的分析,提出了适用于缸套活塞环的润滑油粘度指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号