首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究油脂反耗过程中不同营养物质的添加对裂殖壶菌胞内油脂含量、油脂组分及各油脂组分中DHA含量的影响,开发一种能够有效提高胞内油脂中磷脂DHA含量的营养物质添加方法。结果表明:单营养物质添加实验发现谷氨酸钠、乙醇可以有效缓解反耗期油脂含量的降低;磷酸二氢钾、乙醇、硫酸铵可以有效提高胞内极性脂的含量;酵母膏、硫酸铵可以有效提高极性脂中DHA的含量。多种营养物质复配添加实验发现,谷氨酸钠-磷酸二氢钾复配添加效果最佳,添加后,胞内油脂含量维持在26.65 g/L,与未添加营养物质相比,提高了44.52%;其中极性脂占总油脂的49.08%,极性脂中DHA含量达到54.65%,PUFA与SFA比值为4.48。  相似文献   

2.
裂殖壶菌是替代深海鱼油产业化生产二十二碳六烯酸(docosahexaenoic acid, DHA)油脂的极具潜力的微生物。该研究采用1株裂殖壶菌DP-16发酵产油脂,以葡萄糖为碳源,以酵母浸粉和谷氨酸钠为氮源,以KH2PO4为磷源,探究了氮、磷源浓度对菌体生长、葡萄糖消耗和油脂积累的影响。结果显示,在正常氮、磷源浓度下培养菌体,0~24 h为细胞增殖期,24~84 h为油脂积累期,在84 h油脂产量和油脂含量分别达到14.1 g/L和33.5%,84~96 h进入油脂反耗期。改变氮、磷源浓度,低磷条件下72 h的油脂产量和油脂含量分别达到14.8 g/L和44.3%,比对照组分别提高了5.0%和32.2%,而高氮、低氮、高磷等条件均不利于裂殖壶菌产油脂。研究结果表明,氮、磷源浓度对裂殖壶菌细胞生长和油脂积累产生重要影响,油脂产量取决于菌体生物量和细胞内油脂含量的乘积,为提高油脂产量,需要在获得高细胞浓度(生物量)和达到高油脂含量之间找到一个合适的平衡,以确定适宜的氮、磷源浓度。该研究对促进裂殖壶菌发酵产DHA油脂具有重要参考意义。  相似文献   

3.
采用磷酸香草醛法实时监测裂殖壶菌发酵产DHA油脂的积累情况,对裂殖壶菌的基础发酵工艺进行了优化。得到裂殖壶菌生长和油脂积累的最佳培养基配方为:葡萄糖30 g/L,玉米浆粉6 g/L,蛋白胨4 g/L,硝酸钠3.6~3.9 g/L,海水晶15 g/L;在50 L的发酵罐中采用后期流加一定量的葡萄糖提高碳氮比来提高油脂积累外,通过流加3.0 g/L的大豆油来刺激菌体生长,最终经过72 h的流加培养,菌体湿重达到200 g/L,总油脂含量达到60%以上,油脂脂肪酸组成中的DHA含量占22%左右。  相似文献   

4.
为探究裂殖壶菌积累类胡萝卜素的营养胁迫调控手段,考察了发酵中期(72 h起),不同葡萄糖补加质量浓度、酵母提取物补加质量浓度对裂殖壶菌生长、油脂合成和类胡萝卜素合成的影响。结果表明:仅补加较低质量浓度葡萄糖时,裂殖壶菌生物量和油脂产量虽较低,但胞内类胡萝卜素含量较高;在5 L发酵罐中、发酵中期,采用溶氧反馈控制葡萄糖流加策略,人为制造葡萄糖亚适量补加条件,在发酵98 h时胞内类胡萝卜素含量达到最大,为151.0μg/g,相比葡萄糖充足供应条件下的水平提高了4倍以上。综合发酵实验结果和裂殖壶菌代谢途径分析,可推测:油脂合成期葡萄糖亚适量补加可限制细胞生长、弱化裂殖壶菌胞内油脂合成途径,胁迫碳源流向类胡萝卜素合成途径,促进类胡萝卜素的大量积累。  相似文献   

5.
研究不同碳氮源浓度和培养温度对裂殖壶菌产DHA的影响。用干重法测定裂殖壶菌的生物量,溶剂法提取油脂,并用GC分析DHA含量。结果表明:最适初始葡萄糖质量浓度和氮源质量浓度分别为80、15 g/L;菌种在26℃下培养48 h后,再将发酵温度降到22℃下培养120 h,其DHA含量为43.62%,DHA产量为5.23 g/L。在最佳条件下,50 L放大培养(先26℃培养48 h,后22℃培养96 h)后油脂产量可达14.8 g/L,DHA产量可达6.5 g/L。综上所述,裂殖壶菌具有较好的工业化生产潜力。  相似文献   

6.
采用水酶法对裂殖壶菌油脂的提取工艺进行研究,通过单因素和正交实验优化提取工艺条件,并对裂殖壶菌油脂的脂肪酸组成进行分析。实验结果表明,水酶法提取裂殖壶菌油脂的最佳工艺条件:复合酶配比2∶8(纤维素酶∶中性蛋白酶,U∶U),液料比4 m L/g,加酶量2 500 U/g,酶解温度55℃,酶解时间4h;在此优化条件下,裂殖壶菌油脂提取率为82.47%。裂殖壶菌油脂脂肪酸以C14∶0、C16∶0、C22∶5n-6和C22∶6n-3为主,其脂肪酸组成简单,且C22∶6n-3质量分数高达32.65%,表明裂殖壶菌油脂具有很高的营养价值和功能性油脂的开发潜力,可作为C22∶6n-3的重要食药来源。  相似文献   

7.
为了建立快速检测裂殖壶菌胞内油脂的方法,探讨了尼罗红荧光染色法检测裂殖壶菌油脂含量的检测条件。通过考察裂殖壶菌重悬液中添加二甲基亚砜体积分数、尼罗红染液用量、染色温度、染色时间及细胞密度对荧光强度的影响,确立最优检测条件,进一步考察细胞油脂含量与荧光强度的关系,从而建立尼罗红荧光检测法的定量关系。结果表明,最优检测条件为:每毫升裂殖壶菌重悬液中二甲基亚砜体积分数和尼罗红染液用量分别为25%和15μL,染色温度50℃,染色时间15 min。在最优检测条件下,细胞密度不超过0.218×10~8个/m L范围内,菌液油脂含量(X)与荧光强度(Y)呈现良好的线性关系,其线性关系式为Y=798.55X-3.44,相关系数R2为0.996 4。因此,采用尼罗红荧光染色法可以快速检测裂殖壶菌的油脂含量。  相似文献   

8.
为研究裂殖壶菌油脂成分及抗氧化活性,本文采用气相色谱-质谱和核磁共振技术分别对裂殖壶菌油脂的脂肪酸组成和脂质成分进行分析,并对油脂的自由基清除能力和总抗氧化能力进行测定。结果表明:裂殖壶菌油脂的脂肪酸组成简单,主要为C14:0(13.22%)、C16:0(26.78%)、C22:5n-6(DPA,13.66%)和C22:6n-3(DHA,42.04%);其脂质成分以甘油三酯为主,含有少量游离脂肪酸,且C22:6n-3和C22:5n-6等多不饱和脂肪酸主要结合于甘油三酯的sn-2位。同时,裂殖壶菌油脂具有较好的DPPH、ABTS+和羟基等自由基清除能力和总抗氧化能力,且在10~50 mg/mL质量浓度范围内呈现显著的量效关系(P<0.05)。裂殖壶菌油脂富含C22:6n-3和较好的抗氧化活性,具有较高的营养价值和功能油脂开发潜力。本研究为裂殖壶菌油脂成分分析、抗氧化活性评价以及功能性油脂开发提供了理论依据。  相似文献   

9.
为了建立快速检测裂殖壶菌胞内油脂的方法,探讨了尼罗红荧光染色法检测裂殖壶菌油脂含量的检测条件。通过考察裂殖壶菌重悬液中添加二甲基亚砜体积分数、尼罗红染液用量、染色温度、染色时间及细胞密度对荧光强度的影响,确立最优检测条件,进一步考察细胞油脂含量与荧光强度的关系,从而建立尼罗红荧光检测法的定量关系。结果表明,最优检测条件为:每毫升裂殖壶菌重悬液中二甲基亚砜体积分数和尼罗红染液用量分别为25%和15μL,染色温度50℃,染色时间15 min。在最优检测条件下,细胞密度不超过0.218×10^8个/m L范围内,菌液油脂含量(X)与荧光强度(Y)呈现良好的线性关系,其线性关系式为Y=798.55X-3.44,相关系数R2为0.996 4。因此,采用尼罗红荧光染色法可以快速检测裂殖壶菌的油脂含量。  相似文献   

10.
为降低发酵培养裂殖壶菌生产DHA的成本,以酱香型白酒酒糟为实验材料,将其简单预处理后作为裂殖壶菌发酵培养基氮源,首先分析了酒糟处理液与胰蛋白胨的游离氨基酸组成与含量,然后以生物量、油脂产量和DHA产量为指标,对酒糟处理液、胰蛋白胨、酵母提取物和牛肉膏作为氮源培养裂殖壶菌生产DHA进行了比较,优化了酒糟处理液作为氮源时的发酵工艺条件,并对发酵废液进行三次循环利用。结果表明:酒糟处理液可以作为满足裂殖壶菌生长的氮源;与酵母提取物、牛肉膏相比,酒糟处理液作为氮源有明显优势;利用酒糟处理液作为氮源的最佳发酵工艺条件为酒糟(含水量约10%)与水质量比1∶ 9、酒糟处理液添加量70%(与基础发酵培养基中水的置换比例)、初始pH 7.0、培养时间108 h,在此条件下裂殖壶菌生物量、油脂产量和DHA产量分别达到22.14、8.88 g/L和284 g/L;最佳条件下三次循环添加15.0%(与基础发酵培养基中水的置换比例)发酵废液于酒糟处理液培养基中,裂殖壶菌DHA产量分别为4.27、3.70 g/L和2.75 g/L。综上,利用酒糟处理液培养裂殖壶菌生产DHA是酒糟资源化利用的新方法。  相似文献   

11.
Since grapevine ( Vitis spp .) rootstock material is being traded increasingly as disbudded woody material a lack of distinctive morphological features on such material necessitates an alternative and reliable means of identification. Methods described here were developed for rapid and efficient extraction of DNA from woody samples rich in phenolic compounds and polysaccharides, and for subsequent identification of varieties by RAPD PCR. Using these methods, and with the application of only one selected RAPD primer, we were able to differentiate sixteen rootstock varieties, including the seven varieties most commonly used in Germany. Problems commonly encountered with reproducibility of RAPD patterns were avoided by choosing primers with a dinucleotide sequence and a high G/C content that allowed a rather high annealing temperature of 45°C. Methods described here should also be useful for other horticultural crops, especially those with woody tissues rich in phenolic compounds and polysaccharides.  相似文献   

12.
An internet website (http://cpf.jrc.it/smt/) has been produced as a means of dissemination of methods of analysis and supporting spectroscopic information on monomers and additives used for food contact materials (principally packaging). The site which is aimed primarily at assisting food control laboratories in the European Union contains analytical information on monomers, starting substances and additives used in the manufacture of plastics materials. A searchable index is provided giving PM and CAS numbers for each of 255 substances. For each substance a data sheet gives regulatory information, chemical structures, physico-chemical information and background information on the use of the substance in particular plastics, and the food packaging applications. For monomers and starting substances (155 compounds) the infra-red and mass spectra are provided, and for additives (100 compounds); additionally proton NMR are available for about 50% of the entries. Where analytical methods have been developed for determining these substances as residual amounts in plastics or as trace amounts in food simulants these methods are also on the website. All information is provided in portable document file (PDF) format which means that high quality copies can be readily printed, using freely available Adobe Acrobat Reader software. The website will in future be maintained and up-dated by the European Commission's Joint Research Centre (JRC) as new substances are authorized for use by the European Commission (DG-ENTR formerly DGIII). Where analytical laboratories (food control or other) require reference substances these can be obtained free-ofcharge from a reference collection housed at the JRC and maintained in conjunction with this website compendium.  相似文献   

13.
The characterization of the aromatic profile of several apricot cultivars with molecular tracers in order to obtain objective data concerning the aromatic quality of this fruit was undertaken using headspace–solid phase microextraction (HS–SPME). Six apricot cultivars were selected according to their organoleptic characteristics: Iranien, Orangered, Goldrich, Hargrand, Rouge du Roussillon and A4025. The aromatic intensity of these varieties measured by HS–SPME–Olfactometry were defined and classified according to the presence and the intensity of grassy, fruity and apricot like notes. In the six varieties, 23 common volatile compounds were identified by HS–SPME–GC–MS. Finally, 10 compounds, ethyl acetate, hexyl acetate, limonene, β-cyclocitral, γ-decalactone, 6-methyl-5-hepten-2-one, linalool, β-ionone, menthone and (E)-hexen-2-al were recognized by HS–SPME–GC–O as responsible of the aromatic notes involved in apricot aroma and considered as molecular tracers of apricot aromatic quality which could be utilized to discriminate apricot varieties.  相似文献   

14.
The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 μm-thick oriented PP) into the food simulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.  相似文献   

15.
A 9% whey protein (WP) isolate solution at pH 7.0 was heat-denatured at 80°C for 30 min. Size-exclusion HPLC showed that native WP formed soluble aggregates after heat-treatment. Additions of CaCl2 (10–40 mM), NaCl (50–400 mM) or glucono-delta-lactone (GDL, 0.4–2.0%, w/v) or hydrolysis by a protease from Bacillus licheniformis caused gelation of the denatured solution at 45°C. Textural parameters, hardness, adhesiveness, and cohesiveness of the gels so formed changed markedly with concentration of added salts or pH by added GDL. Maximum gel hardness occurred at 200 mM NaCl or pH 4.7. Increasing CaCl2 concentration continuously increased gel hardness. Generally, GDL-induced gels were harder than salt-induced gels, and much harder than the protease-induced gel.  相似文献   

16.
17.
The levels of bisphenol-F-diglycidyl ether (BFDGE) were quantified as part of a European survey on the migration of residues of epoxy resins into oil from canned fish. The contents of BFDGE in cans, lids and fish collected from all 15 Member States of the European Union and Switzerland were analysed in 382 samples. Cans and lids were separately extracted with acetonitrile. The extraction from fish was carried out with hexane followed by re-extraction with acetonitrile. The analysis was performed by reverse phase HPL C with fluorescence detection. BFDGE could be detected in 12% of the fish, 24% of the cans and 18% of the lids. Only 3% of the fish contained BFDGE in concentrations considerably above 1mg/kg. In addition to the presented data, a comparison was made with the levels of BADGE (bisphenol-A-diglycidyl ether)analysed in the same products in the context of a previous study.  相似文献   

18.
19.
This paper describes the second part of a project undertaken to develop certified mussel reference materials for paralytic shellfish poisoning toxins. In the first part two interlaboratory studies were undertaken to investigate the performance of the analytical methodology for several PSP toxins, in particular saxitoxin and decarbamoyl-saxitoxin in lyophilized mussels, and to set criteria for the acceptance of results to be applied during the certification exercise. Fifteen laboratories participated in this certification study and were asked to measure saxitoxin and decarbamoyl-saxitoxin in rehydrated lyophilized mussel material and in a saxitoxin-enriched mussel material. The participants were allowed to use a method of their choice but with an extraction procedure to be strictly followed. The study included extra experiments to verify the detection limits for both saxitoxin and decarbamoyl-saxitoxin. Most participants (13 of 15) were able to meet all the criteria set for the certification study. Results for saxitoxin.2HCl yielded a certified mass fraction of <0.07 mg/kg in the rehydrated lyophilized mussels. Results obtained for decarbamoyl-saxitoxin.2HCl yielded a certified mass fraction of 1.59+/-0.20 mg/kg. The results for saxitoxin.2HCl in enriched blank mussel yielded a certified mass fraction of 0.48 +/- 0.06 mg/kg. These certified reference materials for paralytic shellfish poisoning toxins in lyophilized mussel material are the first available for laboratories to test their method for accuracy and performance.  相似文献   

20.
The European Commission's, Quality of Life Research Programme, Key Action 1—Health, Food & Nutrition is mission-oriented and aims, amongst other things, at providing a healthy, safe and high-quality food supply leading to reinforced consumer confidence in the safety of European food. Its objectives also include the enhancing of the competitiveness of the European food supply. Key Action 1 is currently supporting a number of different types of European collaborative projects in the area of risk analysis. The objectives of these projects range from the development and validation of prevention strategies including the reduction of consumers risks; development and validation of new modelling approaches; harmonization of risk assessment principles, methodologies, and terminology; standardization of methods and systems used for the safety evaluation of transgenic food; providing of tools for the evaluation of human viral contamination of shellfish and quality control; new methodologies for assessing the potential of unintended effects of genetically modified (genetically modified) foods; development of a risk assessment model for Cryptosporidium parvum related to the food and water industries; to the development of a communication platform for genetically modified organism, producers, retailers, regulatory authorities and consumer groups to improve safety assessment procedures, risk management strategies and risk communication; development and validation of new methods for safety testing of transgenic food; evaluation of the safety and efficacy of iron supplementation in pregnant women; evaluation of the potential cancer-preventing activity of pro- and pre-biotic ('synbiotic') combinations in human volunteers. An overview of these projects is presented here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号