首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to overcome the computational difficulties in Karhunen–Loève (K–L) expansions of stationary random material properties in stochastic finite element method (SFEM) analysis, a Fourier–Karhunen–Loève (F–K–L) discretization scheme is developed in this paper, by following the harmonic essence of stationary random material properties and solving a series of specific technical challenges encountered in its development. Three numerical examples are employed to investigate the overall performance of the new discretization scheme and to demonstrate its use in practical SFEM simulations. The proposed F–K–L discretization scheme exhibits a number of advantages over the widely used K–L expansion scheme based on FE meshes, including better computational efficiency in terms of memory and CPU time, convenient a priori error‐control mechanism, better approximation accuracy of random material properties, explicit methods for predicting the associated eigenvalue decay speed and geometrical compatibility for random medium bodies of different shapes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
We present a sub‐structuring method for the coupling between a large elastic structure, and a stratified soil half‐space exhibiting random heterogeneities over a bounded domain and impinged by incident waves. Both media are also weakly dissipative. The concept of interfaces classically used in sub‐structuring methods is extended to ‘volume interfaces’ in the proposed approach. The random dimension of the stochastic fields modelling the heterogeneities in the soil is reduced by introducing a Karhunen–Loéve expansion of these stochastic fields. The coupled overall problem is solved by Monte‐Carlo simulation techniques. A realistic example of a large industrial structure interacting with an uncertain stratified soil medium under earthquake is finally presented. This case study and others validate the presented methodology and its ability to handle complex mechanical systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Stochastic seismic finite element analysis of a cable-stayed bridge whose material properties are described by random fields is presented in this paper. The stochastic perturbation technique and Monte Carlo simulation (MCS) method are used in the analyses. A summary of MCS and perturbation based stochastic finite element dynamic analysis formulation of structural system is given. The Jindo Bridge, constructed in South Korea, is chosen as a numerical example. The Kocaeli earthquake in 1999 is considered as a ground motion. During the stochastic analysis, displacements and internal forces of the considered bridge are obtained from perturbation based stochastic finite element method (SFEM) and MCS method by changing elastic modulus and mass density as random variable. The efficiency and accuracy of the proposed SFEM algorithm are evaluated by comparison with results of MCS method. The results imply that perturbation based SFEM method gives close results to MCS method and it can be used instead of MCS method, especially, if computational cost is taken into consideration.  相似文献   

4.
Random fields (RFs) are important tools for modeling space–time processes and data. The Karhunen–Loève (K–L) expansion provides optimal bases which reduce the dimensionality of random field representations. However, explicit expressions for K–L expansions only exist for a few, one-dimensional, two-parameter covariance functions. In this paper we derive the K–L expansion of the so-called Spartan spatial random fields (SSRFs). SSRF covariance functions involve three parameters including a rigidity coefficient η1, a scale coefficient, and a characteristic length. SSRF covariances include both monotonically decaying and damped oscillatory functions; the latter are obtained for negative values of η1. We obtain the eigenvalues and eigenfunctions of the SSRF K–L expansion by solving the associated homogeneous Fredholm equation of the second kind which leads to a fourth order linear ordinary differential equation. We investigate the properties of the solutions, we use the derived K–L base to simulate SSRF realizations, and we calculate approximation errors due to truncation of the K–L series.  相似文献   

5.
Termed as random media, rocks, composites, alloys and many other heterogeneous materials consist of multiple material phases that are randomly distributed through the medium. This paper presents a robust and efficient algorithm for reconstructing random media, which can then be fed into stochastic finite element solvers for statistical response analysis. The new method is based on nonlinear transformation of Gaussian random fields, and the reconstructed media can meet the discrete‐valued marginal probability distribution function and the two‐point correlation function of the reference medium. The new method, which avoids iterative root‐finding computation, is highly efficient and particularly suitable for reconstructing large‐size random media or a large number of samples. Also, benefiting from the high efficiency of the proposed reconstruction scheme, a Karhunen–Loève (KL) representation of the target random medium can be efficiently estimated by projecting the reconstructed samples onto the KL basis. The resulting uncorrelated KL coefficients can be further expressed as functions of independent Gaussian random variables to obtain an approximate Gaussian representation, which is often required in stochastic finite element analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper focuses on the problem of stochastic instability resulting from the action of dissipation and random excitations. The energy–momentum theorem is extended from deterministic Hamiltonian systems to stochastic Hamiltonian systems, and then a weak energy–momentum method is presented for stochastic instability analysis of random systems suffering destabilizing effects of dissipation and random excitations. The presented method combines the stochastic averaging procedure to formulate the equivalent systems of random systems for obtaining the stochastic instability criteria in probability, and can be applied to a class of systems including random gyroscopic systems with positive or negative definite potential energy. As an example, the stochastic instability conditions of a Lagrange top subjected to random vertical support excitations are formulated to express the stochastic instability induced by dissipation and random excitations.  相似文献   

7.
The paper investigates the problem of numerical stability of the Karhunen–Loève expansion for the simulation of Gaussian stochastic fields using Galerkin scheme. The instability is expressed as loss of positive definiteness of covariance matrix and is the result of modifications of standard exponential covariance functions that are commonly applied to increase the sparsity of the covariance matrix. The loss of positive definiteness of covariance matrix limits the use of efficient eigenvalue solvers that are needed for the solution of the resulting generalized eigenvalue problem. Two modifications of the shape of covariance function to avoid instability problems and at the same time to raise the numerical efficiency of Karhunen–Loève expansion by increasing the sparsity of the covariance matrix are proposed. The effects of the proposed modifications are demonstrated on numerical examples.  相似文献   

8.
Physical properties of soil vary from point to point in space and exhibit great uncertainty, suggesting random field as a natural approach in modelling and synthesizing these properties. The significance of considering spatial variability and uncertainty of soil properties is greatly manifested in the probabilistic seismic risk analysis of soil–structural system (nonlinear dynamic analysis under earthquake loading), where modelling and synthesis of the spatial variability and uncertainty of soil properties are necessary. This paper introduces a meshfree-Galerkin approach within the Karhunen–Loève (K–L) expansion scheme for representation of spatial soil properties modelled as the random fields. The meshfree shape functions are introduced and employed as a set of basis functions in the Galerkin scheme to obtain the eigen-solutions of integral equation of K–L expansion. An optimization scheme is proposed for the resulting eigenvectors in treating the compatibility between the target and analytical covariance models. Assessments of the meshfree-Galerkin method are conducted for the resulting eigen-solutions and the representation of covariance models for various homogeneous and nonhomogeneous random fields. The accuracy and validity of the proposed approach are demonstrated through the modelling and synthesis of the spatial field models inferred from the field measurements.  相似文献   

9.
In this article, a unified framework is introduced for robust structural topology optimization for 2D and 3D continuum and truss problems. The uncertain material parameters are modelled using a spatially correlated random field which is discretized using the Karhunen–Loève expansion. The spectral stochastic finite element method is used, with a polynomial chaos expansion to propagate uncertainties in the material characteristics to the response quantities. In continuum structures, either 2D or 3D random fields are modelled across the structural domain, while representation of the material uncertainties in linear truss elements is achieved by expanding 1D random fields along the length of the elements. Several examples demonstrate the method on both 2D and 3D continuum and truss structures, showing that this common framework provides an interesting insight into robustness versus optimality for the test problems considered.  相似文献   

10.
Crack propagation in metals has long been recognized as a stochastic process. As a consequence, crack propagation rates have been modeled as random variables or as random processes of the continuous. On the other hand, polynomial chaos is a known powerful tool to represent general second order random variables or processes. Hence, it is natural to use polynomial chaos to represent random crack propagation data: nevertheless, no such application has been found in the published literature. In the present article, the large replicate experimental results of Virkler et al. and Ghonem and Dore are used to illustrate how polynomial chaos can be used to obtain accurate representations of random crack propagation data. Hermite polynomials indexed in stationary Gaussian stochastic processes are used to represent the logarithm of crack propagation rates as a function of the logarithm of stress intensity factor ranges. As a result, crack propagation rates become log-normally distributed, as observed from experimental data. The Karhunen–Loève expansion is used to represent the Gaussian process in the polynomial chaos basis. The analytical polynomial chaos representations derived herein are shown to be very accurate, and can be employed in predicting the reliability of structural components subject to fatigue.  相似文献   

11.
This paper introduces a generalized 3rd-order Spectral Representation Method for the simulation of multi-dimensional random fields and ergodic multi-variate stochastic processes with asymmetric non-linearities. The formula for the simulation of general d-dimensional random fields is presented and the method is applied to simulate 2D and 3D random fields. The differences between samples generated by the proposed methodology and the existing classical Spectral Representation Method are analysed. The formula for the simulation of multi-variate random processes is subsequently developed. An important feature of the methodologies is that they can be implemented efficiently with the Fast Fourier Transform (FFT), details of which are presented. Computational savings are shown to grow exponentially with dimensionality as a testament of the scalability of the simulation methodology. Examples highlighting the salient features of these methodologies are also presented.  相似文献   

12.
This paper presents a novel methodology for structural reliability analysis by means of the stochastic finite element method (SFEM). The key issue of structural reliability analysis is to determine the limit state function and corresponding multidimensional integral that are usually related to the structural stochastic displacement and/or its derivative, e.g., the stress and strain. In this paper, a novel weak-intrusive SFEM is first used to calculate structural stochastic displacements of all spatial positions. In this method, the stochastic displacement is decoupled into a combination of a series of deterministic displacements with random variable coefficients. An iterative algorithm is then given to solve the deterministic displacements and the corresponding random variables. Based on the stochastic displacement obtained by the SFEM, the limit state function described by the stochastic displacement (and/or its derivative) and the corresponding multidimensional integral encountered in reliability analysis can be calculated in a straightforward way. Failure probabilities of all spatial positions can be obtained at once since the stochastic displacements of all spatial points have been known by using the proposed SFEM. Furthermore, the proposed method can be applied to high-dimensional stochastic problems without any modification. One of the most challenging problems encountered in high-dimensional reliability analysis, known as the curse of dimensionality, can be circumvented with great success. Three numerical examples, including low- and high-dimensional reliability analysis, are given to demonstrate the good accuracy and the high efficiency of the proposed method.  相似文献   

13.
In this paper an algorithm for the probabilistic analysis of concrete structures is proposed which considers material uncertainties and failure due to cracking. The fluctuations of the material parameters are modeled by means of random fields and the cracking process is represented by a discrete approach using a coupled meshless and finite element discretization. In order to analyze the complex behavior of these nonlinear systems with low numerical costs a neural network approximation of the performance functions is realized. As neural network input parameters the important random variables of the random field in the uncorrelated Gaussian space are used and the output values are the interesting response quantities such as deformation and load capacities. The neural network approximation is based on a stochastic training which uses wide spanned Latin hypercube sampling to generate the training samples. This ensures a high quality approximation over the whole domain investigated, even in regions with very small probability.  相似文献   

14.
Mathematical formulation and computational implementation of the stochastic spline fictitious boundary element method (SFBEM) are presented for the analysis of plane elasticity problems with material parameters modeled with random fields. Two sets of governing differential equations with respect to the means and deviations of structural responses are derived by including the first order terms of deviations. These equations, being in similar forms to those of deterministic elastostatic problems, can be solved using deterministic fundamental solutions. The calculation is conducted with SFBEM, a modified indirect boundary element method (IBEM), resulting in the means and covariances of responses. The proposed method is validated by comparing the solutions obtained with Monte Carlo simulation for a number of example problems and a good agreement of results is observed.  相似文献   

15.
The construction of probabilistic models in computational mechanics requires the effective construction of probability distributions of random variables in high dimension. This paper deals with the effective construction of the probability distribution in high dimension of a vector‐valued random variable using the maximum entropy principle. The integrals in high dimension are then calculated in constructing the stationary solution of an Itô stochastic differential equation associated with its invariant measure. A random generator of independent realizations is explicitly constructed in this paper. Three fundamental applications are presented. The first one is a new formulation of the stochastic inverse problem related to the construction of the probability distribution in high dimension of an unknown non‐stationary random time series (random accelerograms) for which the velocity response spectrum is given. The second one is also a new formulation related to the construction of the probability distribution of positive‐definite band random matrices. Finally, we present an extension of the theory when the support of the probability distribution is not all the space but is any part of the space. The third application is then a new formulation related to the construction of the probability distribution of the Karhunen–Loeve expansion of non‐Gaussian positive‐valued random fields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Soil parameters are spatially random variables. Thus, the spatial correlation relationship, besides the mean and variance, of a specific soil site is needed for any realistic stochastic modeling. In this regard, an improved autocorrelation model involving a linear, an exponential and cosine terms, named linear-exponential-cosine (LNCS), is adopted here to capture the spatial properties of the soil deposits. Further, a random field of the soil deposit is simulated using a two-dimensional Karhunen–Loéve expansion based on the new autocorrelation model. Furthermore, two cases for the soil settlement are calculated with the random field of the soil deposits. One case is the stochastic settlement from a reference paper. Some comparisons are undertaken, and it is found that the mean value agrees well with the reference. The other case involves the differential settlement analysis of a real engineering project. The settlement is calculated with the random field, the uniform field respectively, and is compared with the on-site measured values. The results show that the random field model can capture the differential settlement better than the corresponding uniform field model.  相似文献   

17.
A computationally efficient method is presented for the buckling analysis of shells with random imperfections, based on a linearized buckling approximation of the limit load of the shell. A Stochastic Finite Element Method approach is used for the analysis of the “imperfect” shell structure involving random geometric deviations from its perfect geometry, as well as spatial variability of the modulus of elasticity and thickness of the shell, modeled as random fields. A corresponding eigenproblem for the prediction of the buckling load is solved at each MCS using a Rayleigh quotient-based formulation of the Preconditioned Conjugate Gradient method. It is shown that the use of the proposed method reduces drastically the computational effort involved in each MCS, making the implementation of such stochastic analyses in real-world structures affordable.  相似文献   

18.
This paper explores a method to reduce the computational cost of stochastic finite element codes. The method, known as Gaussian process emulation, consists of building a statistical approximation to the output of such codes based on few training runs. The incorporation of emulation is explored for two aspects of the stochastic finite element problem. First, it is applied to approximating realizations of random fields discretized via the Karhunen–Loève expansion. Numerical results of emulating realizations of Gaussian and lognormal homogeneous two‐dimensional random fields are presented. Second, it is coupled with the polynomial chaos expansion and the partitioned Cholesky decomposition in order to compute the response of the typical sparse linear system that arises due to the discretization of the partial differential equations that govern the response of a stochastic finite element problem. The advantages and challenges of adopting the proposed coupling are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A physical approach to structural stochastic optimal controls   总被引:3,自引:0,他引:3  
The generalized density evolution equation proposed in recent years profoundly reveals the intrinsic connection between deterministic systems and stochastic systems by introducing physical relationships into stochastic systems. On this basis, a physical stochastic optimal control scheme of structures is developed in this paper, which extends the classical stochastic optimal control methods, and can govern the evolution details of system performance, while the classical stochastic optimal control schemes, such as the LQG control, essentially hold the system statistics since there is still a lack of efficient methods to solve the response process of the stochastic systems with strong nonlinearities in the context of classical random mechanics. It is practically useful to general nonlinear systems driven by non-stationary and non-Gaussian stochastic processes. The celebrated Pontryagin’s maximum principles is employed to conduct the physical solutions of the state vector and the control force vector of stochastic optimal controls of closed-loop systems by synthesizing deterministic optimal control solutions of a collection of representative excitation driven systems using the generalized density evolution equation. Further, the selection strategy of weighting matrices of stochastic optimal controls is discussed to construct optimal control policies based on a control criterion of system second-order statistics assessment. The stochastic optimal control of an active tension control system is investigated, subjected to the random ground motion represented by a physical stochastic earthquake model. The investigation reveals that the structural seismic performance is significantly improved when the optimal control strategy is applied. A comparative study, meanwhile, between the advocated method and the LQG control is carried out, indicating that the LQG control using nominal Gaussian white noise as the external excitation cannot be used to design a reasonable control system for civil engineering structures, while the advocated method can reach the desirable objective performance. The optimal control strategy is then further employed in the investigation of the stochastic optimal control of an eight-storey shear frame. Numerical examples elucidate the validity and applicability of the developed physical stochastic optimal control methodology.  相似文献   

20.
This paper is the first of a two-part series that constitutes an effort to establish spectral- and probability-distribution-free upper bounds on various probabilistic indicators of the response of stochastic systems. In this first paper, the concept of the variability response function (VRF) is discussed in some detail with respect to its strengths and its limitations. It is the first time that various limitations of the classical VRF are discussed. The concept of associated fields is then introduced as a potential tool for overcoming the limitations of the classical VRF. As a first step, the special case of material property variations modeled by a single random variable is examined. Specifically, beam structures with the elastic modulus being the only stochastic property are studied. Results yield a hierarchy of upper bounds on the mean, variance and exceedance values of the response displacement, obtained from zero-mean U-shaped beta-distributed random variables with prescribed standard deviation and lower limit. In the second paper that follows, the concept of the generalized variability response function is introduced and used with the aid of associated fields to extend the upper bounds established in this paper to more general problems involving stochastic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号