首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interesterified soybean oil was crystallized at 29, 34, and 35 °C with and without the use of high‐intensity ultrasound. Samples were crystallized using either (1) continued agitation for the entire crystallization process (CA) or (2) agitation for 10 min (A10) followed by static crystallization. Sonication and agitation decreased the induction period of nucleation at higher temperatures and changed the crystal morphology, crystallization kinetics, and viscoelasticity of the sample. Sonication reduced the crystal sizes and significantly (P <0.05) increased the viscosity (5.2 ± 1.2 to 2369.6 ± 712.1 Pa s) and elastic modulus (83.2 ± 4.1 to 69,236.7 ± 26,765 Pa) of the crystalline networks obtained at 29 °C under A10 condition. An increase in viscosity and elasticity was also observed for sonicated samples crystallized at 34 and 35 °C under A10 and all CA conditions but these differences were not statistically significant (P >0.05). Sonication increased crystallization rates for all conditions tested. Kinetic constants obtained from an Avrami fit increased from1.3 × 10?5 to 6.8 × 10?5 min?n for samples crystallized at 29 °C A10 without and with sonication, respectively, and from 2.6 × 10?9 to 2.4 × 10?7 min?n for samples crystallized at 34 °C A10 without and with sonication, respectively. This increase in the crystallization rate was also observed for samples crystallized under the CA condition at 29 °C.  相似文献   

2.
The objective of this study was to induce crystallization in enzymatically interesterified fats (IE) with 20 and 30% palmitic acid at the sn-2 position using high intensity ultrasound (HIU). The physical blends (PB) used to prepare these two IE were consisted of tripalmitin and high oleic sunflower oil and contained 13.2 and 27.1% tripalmitin, respectively. Crystallization behavior of IE was compared with PB at supercoolings of 9, 6 and 3 °C. Results show that the melting point, SFC, and crystallization rate of PB were higher than IE and were driven mainly by tripalmitin content. HIU induced crystallization and generated small crystals in the IE samples. At 9 °C supercooling, sonication did not increase the viscosity of IE C16:0 20%, while that of the IE C16:0 30% increased significantly from 192.4 ± 118.9 to 3297.7 ± 1368.6 Pa·s. The elastic modulus (G’) for IE C16:0 30% increased from 12521 ± 2739.8 to 75076.7 ± 18259 Pa upon sonication at 9 °C supercooling, while the G’ of the IE C16:0 20% did not increase. Similar behavior was observed for the other supercoolings tested. This research suggests that HIU can improve the functional properties of IE with low content of C16:0 creating more viscous and elastic materials. These fats with low C16:0 content and improved functional properties could be used as trans-free fat alternatives.  相似文献   

3.
The objective of this research was to evaluate the effect of high‐intensity ultrasound (HIU) and crystallization temperature (Tc) on the crystallization behavior, melting profile, and elasticity of a soft stearin fraction of high‐stearic high‐oleic sunflower oil. Results showed that HIU can be used to induce and increase the rate of crystallization of the soft stearin with significantly higher SFC values obtained in the sonicated samples, especially at higher Tc. SFC values were fitted using the Avrami model, and higher kn and lower n values were obtained when samples were crystallized with sonication, suggesting that sonicated samples crystallized faster and through an instantaneous nucleation mechanism. In addition, the crystal morphology, melting behavior, and viscoelasticity were significantly affected by sonication.  相似文献   

4.
The need to eliminate trans-fatty acids from foods’ formulation resulted in the exploration of new lipid sources and alternative processing conditions that will improve the physicochemical characteristics and nutritional qualities of lipid-based foods. In general, the physicochemical characteristics of lipid networks depend on the microstructure and crystallization behavior of the system. The objective of this work was to use high intensity ultrasound (HIU) as an additional processing condition to alter the crystallization behavior of a lipid model system (anhydrous milk fat). Results show that HIU application not only decreases the induction time of crystallization (faster crystallization) at a constant crystallization temperature, but also generates smaller crystals. In addition, higher viscosities are obtained when samples are crystallized after HIU application. The degree of supercooling, ultrasound application settings and a combination of both parameters influence the degree of ultrasound effect on the crystallization behavior.  相似文献   

5.
The objective of this research was to examine the effect of ultrasound frequency and high-speed agitation on lipid crystallization. Interesterified soybean oil was crystallized at 44 °C without and with the application of high intensity ultrasound (HIU—20 and 40 kHz) or with high-speed agitation (6000 and 24,000 rpm). Two tip amplitudes (24 and 108 µm) and three pulse durations were evaluated (5, 10, and 15 s) for the acoustic frequencies tested. Sonication at 20 kHz of frequency significantly reduced crystal size, increased (p < 0.05) elasticity (435.9 ± 173.3–80,218 ± 15,384 Pa) and SFC (0.2 ± 0.0–4.5 ± 0.4%). No significant difference was observed in the crystallization behavior of these samples when sonicated at different amplitudes for 5 and 10 s. The crystallization behavior was significantly delayed (p < 0.05) in samples sonicated using 108 µm amplitude for 15 s. Larger crystals were formed in samples sonicated at 40 kHz compared to those obtained with 20 kHz and lower SFC (3.7 ± 0.0%) and elasticity (3943 ± 1459 Pa) values were obtained. High-speed agitation at 24,000 rpm increased SFC (5.5 ± 0.1%) and crystallized area and decreased the elasticity (42,602 ± 11,775 Pa) compared to the samples sonicated at 20 kHz.  相似文献   

6.
Crystallization behavior of anhydrous milk fat (AMF) was studied with the addition of 0.025 and 0.05 % lactose monolaurate (LML). The crystallization behavior was studied at low (ΔT = 3 °C) and high supercooling (ΔT = 6 °C). Polarized light microscopy and laser turbidimetry indicated a delay in crystallization on addition of 0.025 % and 0.05 % LML or Tween 20 to AMF. High intensity ultrasound (HIU) was applied to AMF samples with 0.05 % LML and lower supercooling (T c = 31 °C; ΔT = 3 °C). HIU application in AMF and AMF + 0.05 % LML induced crystallization (p < 0.05) changing the induction time (τ) at 31 °C from 34.20 ± 1.67 min (AMF) and 47.07 ± 1.27 min (AMF + 0.05 % LML) to 23.23 ± 3.26 min (AMF) and 25.00 ± 0.87 min (AMF + 0.05 % LML). Melting enthalpies (ΔH) of AMF were significantly higher (p < 0.05) than the ones observed for AMF + 0.05 % LML when crystallized without HIU, while enthalpy values increased significantly in AMF + 0.05 % LML samples when crystallized with HIU reaching similar values to the ones obtained for AMF without LML. The viscosity of AMF significantly decreased (p < 0.05) on addition of 0.05 % LML and significantly increased on HIU application.  相似文献   

7.
The crystallization behavior of mango kernel fat (MKF) at 25 °C with and without the application of high-intensity ultrasound (HIU) (20 kHz, 125 W) was studied as a function of ultrasound amplitude level (30%, 50%, and 70% of the maximum amplitude of 180 μm). The irradiation period was fixed at 5 s. It was found that HIU induced MKF crystallization. The crystallization induction time decreased with a decrease in crystal size and an increase in the number of crystals as the HIU amplitude increased. The β' → β transformation was also accelerated with HIU application. This work has shown that there is great potential for the use of HIU in the food industry to achieve a shorter and more controllable crystallization process. In particular, HIU could be used as an efficient tool for controlling the polymorphic transition of fats.  相似文献   

8.
An easy and efficient method for the separation of saturated and unsaturated fatty acid mono alkyl esters, prepared from animal fat, was developed. The most efficient separation was achieved by the use of solvents such as methanol and acetone at low temperatures. The dilution of the alkyl esters with 10 times the amount of solvent (10:1 v/w) and storage of the mixture for 4 h at ?22 °C could be defined as optimum conditions. After filtration of the saturated fraction at the corresponding temperature very pure fractions were obtained. For fatty acid methyl esters deriving from tallow, with an initial content of saturated fatty acids of almost 50 %, a saturated ester fraction with only 5 % unsaturated fatty acids and an unsaturated ester fraction with about 9 % of saturated fatty acids could be obtained. The solvent easily could be recovered by distillation. In addition fatty acid ethyl, 1‐propyl, 2‐propyl, 1‐butyl, tert‐butyl and 3‐methyl‐1‐butyl esters were prepared and separated into saturated and unsaturated fractions. All fractions were analyzed according to the fatty acid compositions and showed similar or slightly worse results compared to the methyl esters. The cold filter plugging points of the unsaturated fractions were measured, showing the lowest value for the unsaturated methyl ester fraction at ?26 °C. The fractionation with the use of solvents is an easy tool in order to obtain fatty acid alkyl esters with excellent cold temperature behavior out of animal fat.  相似文献   

9.
Physical blends (PB) of high oleic sunflower oil and tristearin with 20 and 30% stearic acid and their interesterified (IE) products where 20 and 30% of the fatty acids are stearic acid at the sn-2 position crystallized without and with application of high intensity ultrasound (HIU). IE samples were crystallized at supercooling temperatures (ΔT) of 12, 9, 6, and 3 °C while PB were crystallized at ΔT = 12 °C. HIU induced crystallization in PB samples, but not in the IE ones. Induction in crystallization with HIU was also observed at ΔT = 6 and 3 °C for IE C18:0 20 and 30% and at ΔT = 9 °C only for the 30% samples. Smaller crystals were obtained in all sonicated samples. Melting profiles showed that HIU induced crystallization of low melting triacylglycerols (TAGs) and promoted co-crystallization of low and high melting TAGs. In general, HIU significantly changed the viscosity, G′, and G″ of the IE 20% samples except at ΔT = 12 °C. While G′ and G″ of IE 30% did not increase significantly, the viscosity increased significantly at ΔT = 9, 6, and 3 °C from 1526 ± 880 to 6818 ± 901 Pa.s at ΔT = 3 °C. The improved physical properties of the sonicated IE can make them good contenders for trans-fatty acids replacers.  相似文献   

10.
Physical properties of fats are affected by the reduction of saturated fatty acids. One method for retaining desired properties is the use of high-intensity ultrasound (HIU). The aim of this study was to investigate the influence of HIU power levels, pulse time, and position on the physical properties of a low-saturated palm-based fat crystallized in a scraped surface heat exchanger (SSHE). The sample was crystallized in a SSHE at 26 °C, using a 11 L hour−1 flow rate, and agitation of 344 rpm in the barrels and 208 rpm in the pin worker. HIU was applied using a 12.7 mm tip coupled to a water jacketed (26 °C) flow cell that was placed at the end of the SSHE process. Sonication conditions were 20%, 50%, or 80% amplitude using pulses (5 and 10 s) or continuous sonication. After choosing the best HIU condition, the position of the flow cell was changed to different positions within the SSHE: before the first barrel (HIU-0), between the two barrels (HIU-1), between the second barrel and the pin worker (HIU-2), and after the pin worker (HIU-3). The best sonication condition from the first set of experiments was when HIU was applied using 50% amplitude and 10 s pulses. This condition resulted in higher oil binding capacity (OBC) and storage modulus (G') compared to the non-sonicated sample (OBC: 77% against 69.5%; G':154 kPa against 108 kPa). The best HIU position was HIU-3 since no further agitation was applied. The lack of agitation after sonication induced secondary nucleation and generated a strong crystalline network.  相似文献   

11.
Formation of a low‐fat oil‐in‐water (O/W) nanoemulsion enriched with vitamin E using the nonionic surfactant Tween 40 is studied by means of a high‐pressure homogenizer. The effect of different process variables of the emulsification process, including pressure, temperature, and concentration of the emulsifying agent, is evaluated. The relation between pressure and the obtained mean droplet diameter is derived and described by an equation which can be taken as a basis of any process design. The droplet size can be decreased by increasing the vitamin E concentration. A higher fat content slightly affects the droplet size distribution and the mean droplet diameter of the nanoemulsion, so it is recommended to use preparations of nanoemulsions with low fat contents enriched with vitamin E for dietary supplement.  相似文献   

12.
13.
The objective of this work was to evaluate the effect of high intensity ultrasound (HIU) on the physical properties of a commercial shortening crystallized at a constant temperature and during temperature cycling at two different cooling rates (0.5 and 1 °C/min). Different ultrasound power levels and different durations were evaluated during crystallization at a constant temperature and the best conditions were used to evaluate the effect of HIU during temperature cycling. The physical properties tested were crystal microstructure, viscoelasticity, and melting profile. Results show that HIU is more efficient at changing crystal microstructure when used at 20 °C using a 1/2″ tip. No difference was found on the microstructure of the crystals formed when different durations of ultrasound exposure were tested. A significant increase (p < 0.05) was observed in the storage modulus (G′) of the lipid exposed to temperature fluctuations with the use of HIU. The G′ values increased from 662.6 ± 176.8 Pa (no HIU applied) to 3,365.5 ± 426.4 Pa (with HIU applied, 0.5 °C/min) and from 354.4 ± 49.7 Pa (no HIU applied) to 1,249.0 ± 19.8 Pa (with HIU applied, 1 °C/min).  相似文献   

14.
15.
The effect of different dosages of anhydrous milk fat (AMF) (25%, 50% and 75%, w/w) on shear-crystallization of fat blends made of refined palm oil, refined palm stearin, and rapeseed oil was studied. Classical techniques as differential scanning calorimetry (DSC), pulsed field gradient nuclear magnetic resonance (pfg-NMR), rheometer, and X-ray diffraction (XRD) were applied to evaluate the crystallization kinetics of fat blends as well as the fat compatibility between components in rapid cooling (15 °C min−1), isothermal crystallization (at 15 °C), and storage (5 °C). Obtained results revealed that the mixtures of palm oils and milk fat had a low compatibility. The co-crystallization between triacylglycerols (TAG) of milk fat and of palm oil occurred during isothermal crystallization and storage resulting in slower crystallization kinetics and the formation of some eutectic mixtures.  相似文献   

16.
Binary mixtures of cocoa butter and lauric fats have widespread use in chocolates and confections, yet incompatibilities between these fats can present formulation and processing constraints. This study examined the phase behavior and crystallization kinetics of cocoa butter-lauric fat model systems and chocolate-lauric fat blends. Solid fat content (SFC) profiles and isosolid diagrams confirmed eutectic and diluent interactions, indicating a softening of cocoa butter by lauric fat addition. Crystallization kinetics of model systems adhered to an exponential growth model. High lauric fat levels delayed crystal growth and reduced equilibrium SFC of cocoa butter. Coconut and palm kernel oils altered the solidification mechanisms of cocoa butter to a greater extent than fractionated palm kernel oil. Chocolate systems displayed multi-step crystal growth that contrasted with the exponential growth observed in the model systems. At high lauric fat levels (30%), crystallization onset was significantly lengthened. Blends with high lauric fat contents showed low \(G_{{\text {max}} }^{\prime }\) and did not achieve final equilibrium after 60 min of cooling, indicating incomplete crystallization.  相似文献   

17.
18.
19.
Changes in dietary composition will have a significant impact on the nutritional status of the mother and the offspring. To examine the relevant hormone level changes during lactation and the expression of fatty acid transporters in the placenta and liver under the condition of a high‐fat (HF) diet, we established HF animal models and conducted a cross‐fostering program to mimic the shift in diet. On gestation day (GD)18, the weight of placenta in the HF group was significantly higher than that in the control group (p < 0.05). HF‐fed male pups had a significantly lower serum insulin level, but the same phenomenon was not found in females. On the contrary, serum triacylglycerol (TAG) level presented a tendency to decrease only in female offspring. Oil red O staining showed lipid accumulation in the HF diet offspring livers. The mRNA levels of FATP4 in the placenta in the HF diet group were significantly upregulated compared to the control diet group (p < 0.05). High‐fat diet (HFD) consumption also altered the liver mRNA levels of FATP4, SREBP‐1, and SCD‐1 in the male offspring, while the changes in protein levels of FATP4 were not observed in either sex. In conclusion, maternal HF diet has a profound impact on offspring growth, metabolism, and the risk of metabolic disorders, which would depend on the exposure period of pregnancy and lactation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号