首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a series of theophylline‐loaded calcium pectin gel films were prepared in three different Ca+2 concentrations with three different methods for wound dressing applications. Drug release performance of the films were investigated in four different medium pH in order to mimic wound healing pH conditions. Hydrogel films were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy and atomic force microscopy. Their absorbency (fluid handling), swelling behavior, dehydration rate, dispersion characteristic, dressing pH determination, water vapor permeability, oxygen permeability, surface contact angle, flexibility, Shore A hardness, mean mass per unit area and thickness were determined. The effect of the hydrogels on wound healing was evaluated with an in vitro wound healing assay. After evaluating all data, we suggested that the hydrogel film prepared with swelling method using 7% or 10% crosslinker and dried at 26 °C is more suitable for controlled drug release process. We showed that between pH 3.25 and 7.12 the form of the hydrogel did not change, and drug release was continuous. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46731.  相似文献   

2.
Zein is the major storage protein from corn with strong hydrophobicity and unique solubility and has been considered as a versatile food biopolymer. Due to the special tertiary structures, zein can self‐assemble to form micro‐ and nano‐particles through liquid–liquid dispersion or solvent evaporation approaches. Zein‐based delivery systems have been particularly investigated for hydrophobic drugs and nutrients. Recently, increasing attention has been drawn to fabricate zein‐based advanced drug delivery systems for various applications. In this review, the molecular models of zein tertiary structure and possible mechanisms involved in zein self‐assembly micro‐ and nano‐particles are briefly introduced. Then, a state‐of‐the‐art introduction and discussion are given in terms of preparation, characterization, and application of zein‐based particles as delivery systems in the fields of food science, pharmaceutics, and biomedicine. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40696.  相似文献   

3.
In this study, a novel type of macromolecular prodrug, N‐galactosylated chitosan (GC)?5‐fluorouracil acetic acid (FUA) conjugate based nanoparticles, was designed and synthesized as a carrier for hepatocellular carcinoma drug delivery. The GC–FUA nanoparticles were produced by an ionic crosslinking method based on the modified ionic gelation of tripolyphosphate with GC–FUA. The structure of the as‐prepared GC–FUA was characterized by Fourier transform infrared and 1H‐NMR analyses. The average particle size of the GC–FUA nanoparticles was 160.1 nm, and their drug‐loading content was 21.22 ± 2.7% (n = 3). In comparison with that of the freshly prepared nanoparticles, this value became larger after 7 days because of the aggregation of the GC–FUA nanoparticles. An in vitro drug‐release study showed that the GC–FUA nanoparticles displayed a sustained‐release profile compared to 5‐fluorouracil‐loaded GC nanoparticles. All of the results suggest that the GC–FUA nanoparticles may have great potential for anti‐liver‐cancer applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42625.  相似文献   

4.
A new type of amphiphilic quaternary ammonium chitosan derivative, 2‐N‐carboxymethyl‐6‐O‐diethylaminoethyl chitosan (DEAE–CMC), was synthesized through a two‐step Schiff base reaction process and applied to drug delivery. In the first step, benzaldehyde was used as a protective agent for the incorporation of diethylaminoethyl groups to form the intermediate (6‐O‐diethylaminoethyl chitosan). On the other hand, NaBH4 was used as a reducing agent to reduce the Schiff base, which was generated by glyoxylic acid, for the further incorporation of carboxymethyl groups to produce DEAE–CMC. The structure, thermal properties, surface morphology, and diameter distribution of the resulting chitosan graft copolymers were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, thermogravimetric analysis, differential scanning calorimetry, X‐ray powder diffraction, scanning electron microscopy, and laser particle size analysis. Benefiting from the amphiphilic structure, DEAE–CMC was able to be formed into microspheres in aqueous solution with an average diameter of 4.52 ± 1.21 μm. An in vitro evaluation of these microspheres demonstrated their efficient controlled release behavior of a drug. The accumulated release ratio of vitamin B12 loaded DEAE–CMC microspheres were up to 93%, and the duration was up to 15 h. The grafted polymers of DEAE–CMC were found to be blood‐compatible, and no cytotoxic effect was shown in human SiHa cells in an MTT [3‐(4, 5‐dimethyl‐thiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide] cytotoxicity assay. These results indicate that the DEAE–CMC microspheres could be used as safe, promising drug‐delivery systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39890.  相似文献   

5.
Hydrogels are hydrophilic polymers that swell to an equilibrium volume in the presence of water, preserving their shape. The dynamic swelling behavior of poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) [poly(NIPA‐co‐DMA)] copolymers at 37°C was investigated. It was observed that the swelling degree in the copolymers decreases with the N‐isopropylacrylamide content. In addition, the liberation mechanism was found to be Fickian. Diffusion coefficients according to Fick′s law as a function of the N‐isopropylacrylamide concentration and results of the release process are reported. The kinetics of cephazoline sodium release from poly(NIPA‐co‐DMA) hydrogels with different compositions was studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3433–3437, 2004  相似文献   

6.
Novel hydroxypropylmethyl cellulose (HPMC)‐based sponges containing self‐microemulsifying curcumin (SME‐Cur) were prepared by a freeze drying method using different grades of HPMC (E5 LV, E15 LV, E50 LV, A15 LV, and A4C). The physical properties and drug release from these carriers were characterized and compared among the different formulations. The mean pore size values of the sponges from image analysis ranged from 43.36 ± 4.54 to 123.22 ± 8.19 nm. An increase in the concentration or viscosity of the HPMC, resulted in denser sponges and a slower drug release. The average microemulsion droplet size from the optimal sponge formulation was 34.80 ± 0.1 nm, and the curcumin was almost completely released within 120 min. The AUC after oral administration of the liquid and solid SME‐Cur were 7‐ and 5‐fold greater than that of the curcumin powder in the rabbit, respectively. The results demonstrated that the HPMC‐based sponges loaded with SME‐Cur could be efficiently used to enhance the oral bioavailability and might be useful as they could be administered at a lower dose compared to normal curcumin powder. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42966.  相似文献   

7.
Dexamethasone‐loaded poly(lactide‐co‐glycolide) (PLGA) devices are commonly used as model systems for controlled release. In this study, PLGA nanoparticles containing dexamethasone acetate were prepared by a nanoprecipitation technique in the absence of organochlorine solvents and were characterized by their mean size, ζ potential, scanning electron microscopy, and differential scanning calorimetry to develop a controlled release system. The analytical method for the quantification of dexamethasone acetate by high‐performance liquid chromatography was validated. The results show that it was possible to prepare particles at a nanometric size because the average diameter of the drug‐loaded PLGA particles was 540 ± 4 nm with a polydispersity index of 0.07 ± 0.01 and a ζ potential of ?2.5 ± 0.3 mV. These values remained stable for at least 7 months. The drug encapsulation efficiency was 48%. In vitro tests showed that about 25% of the drug was released in 48 h. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41199.  相似文献   

8.
Carvedilol is a drug with low oral bioavailability due to its high first‐pass metabolism. The purpose of the present study was to prepare a mucoadhesive dry powder inhaler of this drug loaded in poly(ethylene‐co‐vinyl acetate)(PEVA) nanoparticles for pulmonary delivery. PEVA nanoparticles were prepared by an O/W solvent evaporation method and coated with different concentrations of chitosan as a mucoadhesive polymer. Encapsulation efficiency, particle size, zeta potential, release efficiency, and mucoadhesive properties of the different formulations were evaluated on mucin substrate. The optimized formulation of nanoparticles was spray dried using lactose and mannitol as carrier powders. The flowability of the obtained powders was checked by Carr's Index and Hausner ratio and the in vitro deposition of the aerosolized drug was investigated using a Next Generation Impactor. Increasing in the particle size and zeta potential of nanoparticles confirmed the settling of the chitosan coating layer on the surface of nanoparticles. The in vitro drug release from coated nanoparticles decreased with increasing of chitosan concentration. Mucoadhesive property of chitosan‐coated PEVA nanoparticles was higher than noncoated ones. Spray‐dried powders had different aerosilization behavior. Mannitol‐based formulation was found to have low density, better flow ability, smaller aerodynamic diameter (daer) and higher fine powder fraction. The results of the present study allow concluding that mannitol spray dried, mucoadhesive nanoparticles of PEVA are suitable inhaler powder for pulmonary delivery of carvedilol. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39694.  相似文献   

9.
Polypyrrole (PPy) was chemically prepared from aqueous solutions individually containing l ‐serine or l ‐glutamic acid, with the addition of ammonium persulfate as the oxidant. The electrical, XPS and FTIR characterizations indicated that the amino acids co‐doped the PPy backbone. TEM revealed that PPy presented a quasi‐spherical morphology with diameters in nanometric scale. The nanostructures of PPy‐glutamic acid efficiently adsorbed therapeutic doses of amoxicillin. Composite hydrogels were obtained by the entrapment of amoxicillin‐loaded PPy in polyacrylamide network. The antibiotic molecules can be subsequently released (or sustained) from composite hydrogel in response to application (or removal) of electrical stimulation. This tuning release profile can lead to promising drug delivery applications such as implantable devices and iontophoretic systems. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41804.  相似文献   

10.
A thermosensitive amphiphilic triblock copolymer, poly(d,l ‐lactide) (PLA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAAM)‐b‐PLA, was synthesized by the ring‐opening polymerization of d,l ‐lactide; the reaction was initiated from a dihydroxy‐terminated poly(N‐isopropyl acrylamide) homopolymer (HO‐PNIPAAM‐OH) created by radical polymerization. The molecular structure, thermosensitive characteristics, and micellization behavior of the obtained triblock copolymer were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, dynamic light scattering, and transmission electron microscopy. The obtained results indicate that the composition of PLA‐b‐PNIPAAM‐b‐PLA was in good agreement with what was preconceived. This copolymer could self‐assemble into spherical core–shell micelles (ca. 75–80 nm) in aqueous solution and exhibited a phase‐transition temperature around 26 °C. Furthermore, the drug‐delivery properties of the PLA‐b‐PNIPAAM‐b‐PLA micelles were investigated. The drug‐release test indicated that the synthesized PLA‐b‐PNIPAAM‐b‐PLA micelles could be used as nanocarriers of the anticancer drug adriamycin (ADR) to effectively control the release of the drug. The drug‐delivery properties of PLA‐b‐PNIPAAM‐b‐PLA showed obvious thermosensitive characteristics, and the release time of ADR could be extended to 50 h. This represents a significant improvement from previous PNIPAAM‐based drug‐delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45304.  相似文献   

11.
Bioactive wound dressings from poly(vinyl alcohol) (PVA) and zein nanoparticles (NPs) loaded with diclofenac (DLF) were prepared successfully by the single jet electrospinning method. DLF‐loaded zein NPs with an average diameter of ~228 nm were prepared using anti‐solvent precipitation method. The formulation of zein:DLF 1:1 exhibited optimum encapsulation efficiency of 47.80%. The NPs were characterized by dynamic light scattering, zeta‐potential measurement, and differential scanning calorimetry. In vitro, drug release profiles of the DLF‐loaded zein NPs, and PVA–zein NPs were also studied within 120 h and showed the release efficiency of nearly 80% from zein NPs. A more controlled release of DLF was achieved by embedding the zein NPs in the PVA nanofibers. Fourier transform infrared spectroscopy was used to analyze possible interactions between different components of the fabricated dressings. The mechanical properties of the developed dressings were also evaluated using uniaxial tensile testing. Young's modulus (E) of the dressings decreased after inclusion of zein NPs within the PVA nanofibers. Moreover, fibroblast culturing experiments proved that the composite dressings supported better cell attachment and proliferation compared to PVA nanofibers, by exhibiting moderate hydrophilicity. The results suggested that the electrospun composite dressing of PVA nanofibers and zein NPs is a promising topical drug‐delivery system and have a great potential for wound healing application. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46643.  相似文献   

12.
Novel thermally and magnetically dual‐responsive mesoporous silica nanoparticles [magnetic mesoporous silica nanospheres (M‐MSNs)–poly(N‐isopropyl acrylamide) (PNIPAAm)] were developed with magnetic iron oxide (Fe3O4) nanoparticles as the core, mesoporous silica nanoparticles as the sandwiched layer, and thermally responsive polymers (PNIPAAm) as the outer shell. M‐MSN–PNIPAAm was initially used to control the release of sophoridine. The characteristics of M‐MSN–PNIPAAm were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetry, N2 adsorption–desorption isotherms, and vibrating specimen magnetometry analyses. The results indicate that the Fe3O4 nanoparticles were incorporated into the M‐MSNs, and PNIPAAm was grafted onto the surface of the M‐MSNs via precipitation polymerization. The obtained M‐MSN–PNIPAAm possessed superparamagnetic characteristics with a high surface area (292.44 m2/g), large pore volume (0.246 mL/g), and large mesoporous pore size (2.18 nm). Sophoridine was used as a drug model to investigate the loading and release properties at different temperatures. The results demonstrate that the PNIPAAm layers on the surface of M‐MSN–PNIPAAm effectively regulated the uptake and release of sophoridine. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40477.  相似文献   

13.
The development of a self‐assembling hydrogel, prepared from maleimide‐modified and thiolated chitosan (CS), is described. Under mild reaction conditions, the natural CS polymer was coupled with either maleimide or sulfhydryl moieties in a one‐step synthesis. Subsequently, these CS polymers spontaneously formed a covalently crosslinked CS hydrogel when mixed. The three‐dimensional network structure was visualized with scanning electron microscopy. The swelling and degradation behavior was evaluated, and viscosity measurements were conducted. The gel was loaded with the model protein albumin, and prolonged release was achieved. These properties were preserved after lyophilization and rehydration. This makes the hydrogel a promising scaffold for biological wound dressings for the treatment of chronic wounds. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45638.  相似文献   

14.
The purpose of this study was to investigate the suitability of a six‐arm star‐shaped poly(l ‐lactide)s (s‐PLLA) as controlled drug carriers for hydrophobic drug molecules. First, s‐PLLA was synthesized by ring‐opening polymerization of l ‐lactide using sorbitol as initiator and stannous octoate as catalyst. The structure and molecular weight (Mw) of s‐PLLA was characterized with 1H NMR, 13C NMR, and GPC. Second, rifampicin (RIF) used as a model drug was encapsulated within the microspheres of s‐PLLA via oil‐in‐water emulsion/solvent evaporation technique. The morphology, drug encapsulation efficiency (EE), and in vitro release behavior of the prepared microspheres were studied in details. Results indicated that the average diameters of s‐PLLA microspheres can be controlled between 8 and 20 µm by varying the copolymer's concentration or Mw . The EE of RIF was mainly determined by the concentration of s‐PLLA. The in vitro study showed that the burst release behavior can be depressed by increasing the Mw of the s‐PLLA. Present work suggests that the synthesized s‐PLLA could be used as a new material for drug delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42213.  相似文献   

15.
Poly(ether‐block‐amide) (PEBA) films were grafted with acrylic acid (AAc) by gamma radiation, using the oxidative pre‐irradiation technique. The effect of dose, monomer concentration, temperature, and reaction time on the graft percentage of AAc onto PEBA was studied. The modified material PEBA‐g‐AAc was characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscopy, and water contact angle. It was found that PEBA films did not suffer degradation at low doses (<30 kGy) during the grafting process. Additionally, PEBA‐g‐AAc was proved as drug delivery system using vancomycin as drug model. The PEBA‐g‐AAc with 39 and 98% of AAc loaded 63 and 98 mg g?1, respectively. The release profiles showed a sustained delivery by 48 h with a partial retention of drug, which depends of grafting percentage. The microbiological tests showed that PEBA‐g‐AAc was able to inhibit the growing of Staphylococcus aureus in three consecutive challenges. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45745.  相似文献   

16.
This work describes the preparation of thermosensitive chitosan-graft-poly(N-vinylcaprolactam) nanoparticles by ionic gelation and their potential use as a controlled drug delivery system, using doxorubicin as a model drug. A systematic study of the effect of the main processing parameters on both the size and thermoresponsive behavior of nanoparticles was investigated. The size of the particles is strongly dependent on the length of the poly(N-vinylcaprolactam) grafted chains and the concentration of the copolymer and crosslinking agent solutions. The molecular structure of the copolymer plays an essential role in the phase transition temperature of the particles, which decreases with the length of PVCL grafted chain. The system displayed proper drug-association parameters, and the drug-loaded nanoparticles exhibited dose-dependent cytotoxicity. A significant increase in the doxorubicin delivery rate was observed above the phase transition temperature (40 °C). These features indicate that these nanoparticles are suitable for the development of a new thermally controlled anti-cancer drug delivery system. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47831.  相似文献   

17.
The main objective of this work was to prepare a tailor‐made electrospun nanofibrous samples based on poly(?‐caprolactone) (PCL) containing tetracycline hydrochloride (TC‐HCl) as a middle layer and poly(vinyl alcohol) (PVA) including phenytoin sodium (PHT‐Na) as lateral layers. The characterizations of the three‐layered electrospun samples were carried out by using SEM, ATR‐FTIR spectroscopy along with swelling/weight loss, UV–vis spectrophotometry as well as HPLC, antibacterial and MTT tests. The SEM micrograph images showed that the average diameter of PCL nanofibers was decreased from 243 ± 7 nm to 181 ± 5 nm by adding TC‐HCl. The hydrolytic degradation of PVA nanofibers in the exposure of phosphate buffer solution (PBS) was confirmed by ATR‐FTIR results in which a change at the intensity of the characteristic peak located at 3333 cm?1 corresponding to hydroxyl groups (? OH) was observed. The UV–vis outcomes revealed a sustained control release of TC‐HCl from the three‐layered nanofibrous samples (PVA/PCL/PVA) with an amount of about 43% compared to the PCL nanofibers which had an ultimate release of the drug about 79%. Furthermore, the HPLC chromatograms showed the released PHT‐Na from PVA nanofibers about 87%. Finally, the MTT assay along with the antibacterial evaluation exhibited that the surfaces of these electrospun three‐layered nanofibrous samples have no cytotoxicity as well as the controlled release of TC‐HCl from them enabled their prolonged use for preventing the bacterium growth such as S. aureus during 24‐h treatment time. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43309.  相似文献   

18.
Wounds are the ideal setting for the development of micro‐organisms, so it is often necessary to apply a dressing to control bacterial colonization. Cotton is commonly used in dressings, as it exhibits important hydrophilic characteristics such as high moisture and fluid retention properties, but it may provide a sustainable media for the development of micro‐organisms. In this way, the development of new strategies to provide cotton materials with lasting and effective antimicrobial properties is of the utmost importance. Consequently, here we described two processes to develop cotton‐dressings functionalized with antimicrobial peptides (AMPs) magainin I (MagI) and LL‐37, in order to give cotton‐dressings an antibacterial effect. The AMPs showed no cytotoxic effect against human fibroblasts so they are safe to contact with skin. In addition, the functionalized materials with either LL‐37 or MagI present an antimicrobial effect exhibiting inhibition ratios of 89% against Klebsiella pneumoniae and 58% against Staphylococcus aureus, respectively. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40997.  相似文献   

19.
A gastro‐resistant system of acryl‐EZE® MP coated alginate/chitosan microparticles was developed to improve the controlled release of oxytetracycline (OTC). Microparticles were obtained by complex coacervation and, thereafter, were coated using fluidized polymer dispersion with acryl‐EZE® MP solution. OTC distribution inside the microparticles was determined by multiphoton confocal microscopy, demonstrating the efficiency of encapsulation process. In vitro OTC release kinetic was performed in order to obtain the release profile in gastric and intestinal simulated fluids. A fast initial release, or burst effect, was observed with uncoated microparticles loaded with OTC in gastric conditions. When a 50% mass increase in acryl‐EZE® MP coating was achieved, OTC release in acidic medium was greatly reduced, resulting in the expected gastro‐resistant effect. Different mathematical models were applied to describe the drug diffusion across the polymer matrix. The Logistic model was the best tool to interpret the experimental data in most of the systems studied. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40444.  相似文献   

20.
Polymer systems, in the form of crosslinking networks, have been widely used in biomedicine. However, they are a challenge mainly due to the impact of their physicochemical properties on release kinetics of drugs. Ketoprofen is an analgesic anti‐inflammatory drug with short half‐life (<2 h) and quickly eliminated by the body. Topical administration of ketoprofen can reduce pain, accelerate the wound healing process, and minimize the risk of systemic side effects. Therefore, the aim was to synthesize, characterize, and evaluate a novel ketoprofen polymer system in the form of a semi‐interpenetrated network of poly(ethylene glycol)‐chitosan. The pore size studied by small‐angle X‐ray scattering showed the presence of nanoscale pores, 13.7 nm (dry state) and 26.18 nm (swollen form). The maximum swelling was 420 ± 45% at 24 h. Finally, the encapsulated ketoprofen (6.5%) was released at a constant concentration (0.12 ± 0.03 mg/mL, 8 h) and half of the doses up to 24 h. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46644.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号