首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
以P123为结构导向剂,采用溶胶-凝胶法结合冷冻干燥技术制备了0/1/2维混合纳米形貌的正交相V2O5电极活性材料.利用XRD和SEM表征了样品的结构和形貌,通过循环伏安法、恒流充放电和交流阻抗谱测试研究了样品的储锂性能.结果显示,这种0/1/2维混合纳米形貌V2O5具有较高的储锂容量、优异的电化学循环稳定性和出色的大倍率充放电性能,在1 A/g电流密度下循环500次后放电比容量稳定在117.5 mA·h/g,容量保持率为94.4%,在5 A/g大电流密度下,其放电比容量仍保持在88.2 mA·h/g,性能明显优于未添加P123制备的2D片状V2O5材料.  相似文献   

2.
采用金属硝酸盐为金属源, NaOH和Na2CO3为沉淀剂, 利用共沉淀法制备了La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料, 研究了粉体的微观结构和电化学性能, 并与传统的LaCoO3的电化学性能进行了比较. 通过扫描电子显微镜(SEM)、 X射线衍射(XRD)和N2吸附-脱附测试对其进行了表征, 结果表明, 所制备的 La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物为钙钛矿结构, 形貌为球状, 且各组成元素分布均匀, 比表面积(19.83 m2/g)较高. 储锂性能研究表明, La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料具有较高比容量、 优异的倍率性能和循环稳定性, 在200 mA/g的电流密度下, 其首次放电比容量为855.8 mA·h/g, 循环150次后, 比容量增加到771.8 mA·h/g, 远高于理论比容量(331.6 mA·h/g); 在3000 mA/g的高电流密度下循环500次后, 其仍能保持320 mA·h/g的可逆比容量, 接近其理论比容量, 容量保持率高达95.1%. La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物储锂性能的大幅度提高, 主要归因于熵稳定的晶体结构和多主元协同效应, 使其具有较大的锂离子扩散系数(11.2×10-18 cm2/s)和较高的赝电容贡献.  相似文献   

3.
LaCoO3模型催化剂SO2中毒机理的研究   总被引:3,自引:0,他引:3  
运用AES,XPS,XRD和TEM等手段研究了LaCoO3模型催化剂SO2中毒过程表面化学状态、晶相结构及表面形貌的变化状况,初步推断了LaCoO3钙钛矿型复合金属氧化物催化剂的SO2中毒机理.在SO2强化中毒过程中,SO2与催化剂的活性组分LaCoO3反应生成硫酸镧和氧化亚钴,而在催化剂膜层内部则生成硫酸镧、亚硫酸镧及氧化亚钴.SO2对活性组分层的侵入及硫与LaCoO3活性组分的反应破坏了催化剂的钙钛矿结构,使得催化剂彻底中毒.当中毒温度较低及中毒时间较短时,硫在膜层中呈峰形分布,其浓度随中毒温度及时间的增加而增加.随中毒温度的升高及中毒时间的增长,由于亚硫酸盐的分解作用,S在活性层中的浓度反而降低,中毒深度则继续增加.  相似文献   

4.
采用光辅助电化学腐蚀法制备了n-型多孔硅衬底, 再采用水热法在其表面生长TiO2纳米线制得了三维n-型多孔Si/TiO2纳米线异质结构. 通过X射线衍射、 扫描电子显微镜和X射线能量散射等表征证实了n-型多孔Si/TiO2纳米线异质结构的形成. 紫外-可见漫反射光谱测试结果表明, n-型多孔硅与TiO2纳米线的复合提高了紫外-可见波段的光吸收. 光电性能测试结果表明, 3个样品中n-型多孔Si/TiO2纳米线异质结作为光电极的光电流最高, 这说明n-型多孔Si/TiO2纳米线作为光电极具有更高的光电化学分解水性能.  相似文献   

5.
陈丽辉  吴秋晗  潘佩  宋子轩  王锋  丁瑜 《应用化学》2018,35(11):1384-1390
采用模板导向法和高温固相法制备尖晶石型八面体结构的LiMn2O4锂离子电池正极材料,研究了该材料的结构和电化学性能。 电化学性能研究表明,该电极材料具有良好的循环稳定性和倍率性能,在2.5~4.5 V电压范围,电流密度为100 mA/g时,首周充放电比容量分别为147和179 mA·h/g,循环50周后,其充放电比容量仍分别保持在180/181 mA·h/g。 优良的电化学性能可能归因于尖晶石LiMn2O4的形貌结构特征,该方法为制备锂离子电池正极材料提供了思路和依据。  相似文献   

6.
Fe2O3作为锂电池负极材料具有诸多优点,但其较低的本征电导率和充放电循环过程中材料粉化使得其电化学储锂性能有待改善。 本文以具有花状微纳结构的铁醇盐为反应中间体,在空气气氛下烧结制备出具有花状微纳结构的铁基负极材料Fe2O3。 纳米花状的铁醇盐可以在低烧结温度下转化为目标产物,从而使得产物能够保持中间体的形貌。 300 ℃热处理条件下,所得样品在电流密度为200 mA/g时首次放电比容量为1360 mA·h/g,循环100次后的容量仍然达到515.6 mA·h/g;相比之下,450和800 ℃热处理所得样品100次循环后,比容量分别为247.6和206.7 mA·h/g。 微纳结构在增加材料的活性的同时,也能够抑制材料的粉化现象,因而所制得的材料表现出较大的比容量和良好的循环性能,为解决Fe2O3负极材料循环性能差的问题提供了思路。  相似文献   

7.
锂离子电池的性能主要由正、负极材料决定,负极材料Co3O4具备理论容量高、振实密度大、化学性质稳定等特点倍受关注,但存在导电性不好、倍率性能较差等缺点. 解决该问题的手段:一方面可通过材料的纳米化与特殊形貌化如球状、纤维状、片状等,缩短锂离子嵌入和脱出行程;另一方面可通过材料的复合化,促进电子的快速传输和缓冲活性材料在充放电过程中的体积效应. 根据Co3O4颗粒的形貌特性对现有研究进行了分类与综述,阐述了改性手段的可能性机理,并对如何提高Co3O4的电化学性能提出了一些想法.  相似文献   

8.
刘超群  乔秀丽  迟彩霞 《化学通报》2022,85(11):1290-1296
Fe2O3锂离子电池负极材料因其具有的高能量密度而备受关注。但Fe2O3电极材料存在的如低导电性、充/放电过程中体积改变导致的循环稳定性差等问题限制其实际应用。介绍了高比表面积、结构稳定以及储锂动力学等因素对锂离子电池负极材料电化学性能的重要影响,综述电极活性材料纳米化、形貌控制和杂原子掺杂对Fe2O3负极材料电化学性能改善的相关研究进展,最后对Fe2O3电极材料的发展前景进行了展望。  相似文献   

9.
本研究采用柠檬酸溶胶-凝胶法制备了一系列不同载体负载的LaCoO3/MO2催化剂(M=Zr、Ti、Ce),研究考察其催化氧化甲苯与NO的性能及关键机制。结果发现,以CeO2为载体的LaCoO3/CeO2催化剂表现出最佳的催化氧化性能,其甲苯的t90为245℃,同时在300℃时NO转化率可达68%。通过BET、XRD、H2-TPR和XPS对各负载型钙钛矿催化剂的理化性质进行表征。结果表明,负载型钙钛矿催化剂拥有更大的比表面积,从而有效提供了更多的吸附位点,同时负载型钙钛矿催化剂具有更活跃的晶格氧和更好的氧化还原性能。其中,LaCoO3与载体CeO2在接触界面上观察到Co离子与Ce离子之间存在着相互作用,形成晶格缺陷,这有利于氧空位的形成。利用原位漫反射红外光谱进一步探寻了反应机理,LaCoO3/CeO2催化剂上NO氧化符合Langmuir-Hinsh...  相似文献   

10.
通过加热摩尔比为12:7的LiH/Si球磨混合物,避免了Li与Si之间巨大的熔点差异,成功制备了晶态Li12Si7合金,研究了其电化学性能和储锂机制. 发现Li12Si7在0.02 ~ 0.6 V的嵌脱锂过程中,只发生晶胞体积的变化,而不产生相变,呈现出明显的固溶储锂机制. 该固溶储锂机制的存在,有效抑制了Si基负极材料嵌脱锂过程中由于相变导致的体积效应,使得晶态Li12Si7在0.02 ~ 0.6 V电压范围内具有显著改善的电化学性能,其首次库伦效率高达100%,30次循环后的可逆容量保持率约为74%,分别优于相同条件下原始Si电极的55%和37%.  相似文献   

11.
A facile and green freeze-drying-assisted method was proposed to synthesize C0MoO4 mesoporous nano-sheets(MPNSs).The resulting product exhibits a Mgh specific capacity and good rate perfomance when evalimte an anode material for lithium-ion batteries(LIBs).The reversible specific capacity can be kept at 1105.2 mA·h·g^-1 after 100 cycles at a current density of 0.2 A/g.Even at the current densities of 1 and 4 A/gs the CoMoO4 MPNSs electrode can still retain the reversible capacities of 1148.7 and 540 mA·h·g^-1,respectively.Furthermore,the full cell(LiPePO4 catliode/CoMoO4 MPNSs anode)displays a stable discharge capacity of 146.7 mA·h·g^-1 at 0.1 C(1 C=170 mA/g)together with an initial coulombic efficiency of 98.2%.In addition,the CoMoO4 crystal structure is destroyed and reduced into Co^0 and Mo^0 in the first discharge process.In the subsequent cycles,the attractive Li storage properties come from the reversible conversions between Co/Co^2+and Mo/Mo^6+.The improved electroche-mical performance of CoMoO4 MPNSs is mainly attributed to their unique porous structures,which not only possess a good ion diffusion and electronic conduction pathway,but also provide many cavities to alleviate the volume changes during repeated cycling.This work offers a new perspective to the design of other porous electrode materials with a good energy storage performance.  相似文献   

12.
An easy and delicate approach using cheap carbon source as conductive materials to construct 3D sequential porous structural Na3V2(PO4)3/C(NVP/C)with high performance for cathode materials of sodium ion battery is highly desired.In this paper,the NVP/C with 3D sequential porous structure is constructed by a delicate approach named as“cooking porridge”including evaporation and calcination stages.Especially,during evaporation,the viscosity of NVP/C precursor is optimized by controlling the adding quantity of citric acid,thus leading to a 3D sequential porous structure with a high specific surface area.Furthermore,the NVP/C with a 3D sequential porous structure enables the electrolyte to interior easily,providing more active sites for redox reaction and shortening the diffusion path of electron and sodium ion.Therefore,benefited from its unique structure,as cathode material of sodium ion batteries,the 3D sequential porous structural NVP/C exhibits high specific capacities(115.7,88.9 and 74.4 mA·h/g at current rates of 1,20 and 50 C,respectively)and excellent cycling stability(107.5 and 80.4 mA·h/g are remained at a current density of 1 C after 500 cycles and at a current density of 20 C after 2200 cycles,respectively).  相似文献   

13.
采用一步固相煅烧工艺制备了碳纳米管原位封装Ni3S2纳米颗粒(Ni3S2@CNT),并研究了其作为钠离子电池(SIBs)负极材料的电化学性能. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安测试、恒流充放电以及交流阻抗等研究了Ni3S2@CNT的物相结构、形貌特征以及电化学性能. 电化学测试表明,材料在100 mA·g -1电流密度下,放电容量可以达到541.6 mAh·g -1,甚至在2000 mA·g -1的大电流密度下其放电比容量也可以维持在274.5 mAh·g -1. 另外,材料在100 mA·g -1电流密度下,经过120周充放电循环后其放电和充电比容量仍然可以保持在374.5 mAh·g -1和359.3 mAh·g -1,说明其具有良好倍率性能和循环稳定性能. 良好的电化学性能归因于这种独特的碳纳米管原位封装Ni3S2纳米颗粒结构. 碳纳米管不但可以提高复合材料的导电性,也可以缓冲Ni3S2纳米颗粒在反复充放电过程中产生的体积膨胀效应,明显改善了Ni3S2@CNT负极复合材料的电化学性能.  相似文献   

14.
皱褶表面介孔镍钴硫化物微球的制备及其超电性能   总被引:1,自引:0,他引:1  
尤春琴  罗民  阚夏梅  付蓉蓉  梁斌 《应用化学》2015,32(12):1455-1461
通过一步水热法分别合成了α-NiS、Co3S4和CoNi2S4纳米介孔电极材料,并研究了其电化学性能。 X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究表明,介孔硫化物是由单相纳米颗粒堆叠组装而成,其中二元系的CoNi2S4由纳米片自组装形成了具有皱褶表面的微球形貌。 电化学性能研究表明,二元系的CoNi2S4比α-NiS、Co3S4具有更高的比电容、更佳的倍率特性和优异的循环稳定性。 在扫描速率为5 mV/s时,CoNi2S4材料在6 mol/L KOH电解液中比电容高达1678.3 F/g,优于α-NiS (787.4 F/g)和Co3S4(1532.7 F/g),在扫描速率从5 mV/s增加到100 mV/s时,其电容保持率为45.8%,比α-NiS(30.2%)和Co3S4(29.3%)高出约15%。 在15A/g的电流密度下,经过900次循环充-放电后,二元系的CoNi2S4的电容仍保持在96.3%,库伦效率保持在94.3%左右,说明镍钴双金属硫化物具有优异的循环稳定性能和充放电可逆性。  相似文献   

15.
A series of porous carbon materials was synthesized via high temperature pyrolysis from well-defined and thermally stable precursors, namely porous organic frameworks(POFs), in inert atmosphere. The porous carbon materials showed enhanced gas adsorption capacities together with increased heat of adsorption and stronger affinity between the frameworks and the gases as compared to the precursor materials. To exemplify, sample C-POF-TBBP-1000 with a high BET surface area of 1290 m2/g can adsorb 2.8 mmol/g CH4(273 K, 101.325 kPa), 5.4 mmol/g CO2(273 K, 101.325 kPa) and 2.2% H2(mass fraction, 77 K, 101.325 kPa), thereby surpassing most other porous adsorbent materials reported till date. The study highlights the potential of porous carbons derived from novel porous organic framework structures for gas adsorption applications.  相似文献   

16.
采用溶胶-凝胶法合成了Li1.18Ni0.15Co0.15Mn0.52O2富锂层状正极材料, 并使用聚(3-己基噻吩)对其进行了表面包覆. 采用多种光谱学和电化学手段对材料的形貌结构和电化学性能进行了分析. 结果表明, 聚(3-己基噻吩)溶液浸泡后在富锂材料表面形成厚约1.5 nm的均匀包覆层. 表面包覆后富锂层状正极材料的极化和阻抗明显减小. 在0.2C倍率下, 经过100次充放电循环后, 未包覆的富锂材料放电比容量衰减为170 mA·h/g, 而经过0.3%聚(3-己基噻吩)包覆的材料的放电比容量则保持在205 mA·h/g, 容量保持率由68%提高到82%; 10C倍率下的放电比容量由72 mA·h/g提高到116 mA·h/g.  相似文献   

17.
The development of high specific capacitance electrode materials with high efficiency, scalability and economic feasibility is significant for the application of supercapacitors, however, the synthesis of electrode material still faces huge challenges. Herein, graphene(G)/Fe2O3 nanocomposite was prepared via a simple hydrothermal method connected with subsequent thermal reduction process. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) results showed rod-like Fe2O3 nanoparticles were prepared and well-dispersed on graphene layers, providing a rich active site and effectively buffering the aggregation of Fe2O3 nanoparticles in the process of electrochemical reaction. The specific capacitance of the obtained G/Fe2O3 nanocomposite as negative electrode for supercapacitor was 378.7 F/g at the current density of 1.5 A/g, and the specific capacitance retention was 88.76% after 3000 cycles. Furthermore, the asymmetric supercapacitor(ASC) was fabricated with G/Fe2O3 nanocomposite as negative electrode, graphene as positive electrode, which achieved a high energy density of 64.09 W∙h/kg at a power density of 800.01 W/kg, maintained 30.07 W∙h/kg at a power density of 8004.89 W/kg, and retained its initial capacitance by 78.04% after 3000 cycles. The excellent result offered a promising way for the G/Fe2O3 nanocomposite to be applied in high energy density storage systems.  相似文献   

18.
TiO_2纳米管阵列具有较高的光催化活性,但可见光吸收弱,限制了其太阳能利用和环境应用。窄带隙的钙钛矿(ABO3)型氧化物能够吸收大范围波段的可见光,且稳定性高,但光催化活性低。本文首先采用溶胶-凝胶法合成了LaCoO_3纳米颗粒,然后利用电泳沉积技术将LaCoO_3纳米颗粒修饰于TiO_2纳米管阵列表面,构筑了LaCoO_3-TiO_2纳米管阵列。扫描电子显微镜(SEM)、透射电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)的表征结果显示溶胶-凝胶法合成的纳米颗粒为LaCoO_3,其尺寸均匀,结晶度高,平均粒径约为100nm。LaCoO_3纳米颗粒与TiO_2纳米管阵列之间的结合力好。紫外可见吸收光谱(DRS)显示,随着电泳沉积时间的延长,LaCoO_3-TiO_2纳米管阵列的吸收带边逐渐红移700nm。可见光下光催化降解甲基橙(MO)的结果表明,电泳沉积15 min制得的LaCoO_3-TiO_2纳米管阵列对MO的光催化效率最高,其降解速率是相同条件下TiO_2纳米管阵列的4倍。光致发光光谱和电化学阻抗谱证实LaCoO_3纳米颗粒的负载有效地促进了光生电荷的分离和传输,可见光光催化活性明显增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号