首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
等离子体化学气相沉积TiN涂层的后热处理技术研究   总被引:1,自引:0,他引:1  
为了提高等离子体化学气相沉积 (PCVD)涂层的质量 ,改善基体材料的机械性能 ,更好地发挥PCVD硬质涂层的使用效果 ,采用了先沉积后热处理的新工艺。结果表明 ,热处理温度对PCVD TiN涂层的化学成分、显微结构和性能有较大的影响。随着处理温度的提高 ,涂层的结晶度得到大幅度的改善 ,涂层内的杂质氯含量降低 ,涂层的 (2 0 0 )晶面距减小 ,但在 90 0℃时 ,PCVD TiN涂层的显微硬度有一个最低值  相似文献   

2.
等离子增强型化学气相沉积条件对氮化硅薄膜性能的影响   总被引:6,自引:0,他引:6  
等离子增强型化学气相沉积(PECVD)氮化硅技术是目前半导体器件在合金化后低温生长氮化硅的唯一方法.研究了由进口PECVD设备制备的氮化硅薄膜性质与沉积条件的关系,测定了生成膜的各种物理化学性能,详细探讨了各种沉积参数对薄膜性能的影响,提出了沉积优质氮化硅薄膜的工艺条件.  相似文献   

3.
沉积温度对CVD SiC涂层显微结构的影响   总被引:8,自引:0,他引:8  
以MTS为先驱体原料,在950-1300℃、负压条件下沉积了CVDSiC涂层.利用SEM对涂层的表面形貌和断口特征进行了表征.沉积温度和SiC涂层表面形貌的关系如下:950℃时,沉积的SiC颗粒非常细小,为独立的球形堆积;1000-1100℃时,CVDSiC涂层表面光滑、致密;1150-1300℃沉积的SiC涂层呈现出球状或瘤状结构且表面粗糙.结合热力学和晶体形核-长大理论,研究了沉积温度对SiC涂层表面形貌的作用机制.沉积温度和SiC涂层断口形貌的关系如下:1200℃以下沉积的SiC涂层断面致密、无孔洞;而1300℃沉积的SiC涂层断面非常疏松.利用岛状生长模型揭示了SiC涂层内部显微结构的形成机理.  相似文献   

4.
以三氯甲基硅烷和氢气为气源,研究了化学气相沉积碳化硅过程中,温度(850-1350℃)对沉积速率、反应物消耗效应、涂层形貌和相结构的影响.用磁悬浮天平在线实时称量基体质量变化进行动力学研究;采用扫描电镜和X射线衍射对样品做了表征.结果表明,沉积过程存在四个控制机理:a区(<1000℃)为表面反应动力学控制;b区(1000-1050℃)主要是HCl对沉积的抑制作用;c区(1050-1300℃)是表面化学反应和传质共同控制;d(>1300℃)为传质为限速步骤.由于不同的控制机制,导致所得涂层的形貌存在差异.含碳含硅中间物质浓度的减小、HCl增多和MTS的分解共同导致反应物消耗效应.涂层由热解碳和碳化硅两相组成,温度的升高使热解碳相减少,碳硅比接近1.  相似文献   

5.
由MTS-H2体系在1000~1300℃沉积了SiC涂层,研究了SiC涂层沉积速率和温度之间的关系,MTS-H2体系沉积反应的平均活化能为114kJ/mol,用理论模型证明了低温化学气相沉积SiC为动力学控制过程.SiC涂层表面的显微结构随沉积温度变化而呈现规律的变化:沉积温度T<1150℃时,CVD SiC涂层表面致密、光滑;T≥1150℃时,CVD SiC涂层表面变得疏松、粗糙.随着沉积温度的升高,CVD SiC涂层的结晶由不完整趋向于完整;当沉积温度T≥1150℃,CVD SiC涂层的XRD谱图中除了β-SiC占主体外还出现了少量α-SiC.  相似文献   

6.
利用TiCl4-BCl3-H2—Ar反应体系,用化学气相沉积法(CVD)在石墨基体上沉积了TiB2涂层,研究了CVD工艺如沉积温度、气体流量、滞留时间等参数对涂层的物相组成、微晶尺寸、沉积速率、沉积形貌的影响。结果表明,沉积的涂层物相由TiB2组成,随着温度的升高,微晶尺寸增大;当沉积温度为900-950℃、气体总流量...  相似文献   

7.
化学气相沉积碳化锆涂层的研究进展   总被引:1,自引:0,他引:1  
碳化锆具有众多优异的性能,能够适应超高音速飞行、再入大气和火箭推进系统等复杂、苛刻的极端环境,是最具应用潜力的超高温材料之一。综述了化学气相沉积制备碳化锆涂层,介绍了取得的研究成果和存在的问题,指出了今后的研究目标和发展方向。  相似文献   

8.
等离子体化学气相沉积TiN涂层的后热处理技术研究   总被引:1,自引:0,他引:1  
为了提高等离子体化学气相沉积(PCVD)涂层的质量,改善基体材料的机械性能,更好地发挥PCVD硬质涂层的使用效果,采用先沉积后热处理的新工艺。结构表明,热处理温度对PCVD-TiN涂层的化学成分、显微结构和性能有较大的影响。随着处理温度的提高,涂层的结果度得到大幅度的改善,涂层内的杂质氯含量降低,涂层的(200)晶面距减小,但在900℃时,PCVD-TiN涂层的显微硬度有一个最低值。  相似文献   

9.
采用HSiCl3-NH3-N2(稀释气体)体系在石英陶瓷基板上通过低压化学气相沉积(LPCVD)法沉积出了Si3N4涂层,研究了工艺条件对涂层沉积速率的影响.结果表明,在没有稀释气体的情况下,随着沉积温度升高,Si3N4涂层的沉积速率逐渐增加,在850℃附近达到最大值,随着反应温度的进一步升高,涂层沉积速率下降.当存在稀释气体时,在所选温度范围内随着沉积温度的升高,Si3N4涂层的沉积速率一直增大,反应的表观活化能约为222KJ/mol.随着原料中NH3/HSiCl3流量比值的增大,Si3 N4涂层的沉积速率逐渐增加,随后稳定,但稍有下降趋势.在所选稀释气体流量范围内,Si3N4涂层的沉积速率随着稀释气体流量的增加而增大.  相似文献   

10.
为了防止Mo合金的高温氧化,本研究采用低压化学气相沉积技术在Mo合金表面制备MoSi2抗氧化涂层,借助X射线衍射仪、扫描电镜及能谱仪等分析手段,对涂层的微观结构进行了研究,测试了涂层的抗氧化和抗热震性.结果表明:MoSi2涂层结构致密,仅有少量微裂纹存在,表现出良好的抗热震和抗氧化性能;经20次1300℃-室温循环热震实验后,涂层未出现开裂与脱落现象;涂层试样在1300℃氧化气氛下氧化180 h,失重率小于0.83%,分析揭示了涂层试样氧化失重的主要原因为氧扩散通过涂层与Mo基体发生反应,生成极易挥发的MoO、MoO2、MoO3,氧在涂层中的扩散速率决定了涂层的失重速率.  相似文献   

11.
LPCVD氮化硅薄膜的化学组成   总被引:2,自引:0,他引:2  
分别采用X光电子能谱(XPS)、俄歇电子能谱(AES)、傅立叶红外光谱(FTIR)以及弹性反冲探测(ERD)等方法,分析了三氯硅烷-氨气-氮气体系低压化学气相沉积(LPCVD)氮化硅(SiNx)薄膜的化学组成,并利用原子力显微镜(AFM)观察了SiNx薄膜的表面形貌.XPS分析结果表明,当原料气中氨气与三氯硅烷的流量之比小于3时获得富Si的SiNx薄膜,当流量之比大于4时获得近化学计量的SiNx薄膜(x=1.33).AES深度分析与XPS分析结果很好地吻合,在835cm-1产生的强红外吸收峰表明Si-N键的形成,ERD分析表明所制备SiNx薄膜中的氢含量很低(1.2at.%).AFM分析结果表明,所沉积的SiNx薄膜均匀、平整,薄膜的均方根粗糙度RMS仅为0.47nm.  相似文献   

12.
采用傅立叶红外吸收谱和紫外-可见透射谱研究了螺旋波等离子体增强化学气相沉积法制备的氢化非晶氮化硅薄膜的原子间键合结构和光学特性。结果表明,在不同硅、氮活性气体配比R下,薄膜表现出不同的Si/N比和H原子键合方式,富氮样品中H原子主要和N原子结合,而富硅样品中主要和Si原子结合。随着R的增加,薄膜的光学带隙Eg和E04逐渐减小,此结果关联于薄膜结构无序性程度的增加,而薄膜的(E04-Eg)和Tauc斜率B值之间存在着相互制约关系。  相似文献   

13.
APCVD制备氮化硅薄膜的微观结构   总被引:2,自引:0,他引:2  
杨辉  丁新更  孟祥森 《功能材料》2000,31(6):635-636
以SiH4和NH3作为反应气体,用常压化学气相沉积(APCVD)法在平板玻璃表面制备出了氮化硅薄膜,研究氮化硅薄膜的形貌和微观结构,研究结果表明:在660℃温度所获得的氮化硅薄膜为非晶态,氮化硅薄膜与平板玻璃基板之间的界有熔焊现象,结合牢固。  相似文献   

14.
包覆和凝胶注模成型对氮化硅陶瓷性能的影响   总被引:2,自引:0,他引:2  
利用含 Al (NO3) 3,Y (NO3) 3和尿素的水溶液中无机盐的沉淀再经煅烧在 Si3N4粉料的表面包覆 Y2 O3- Al2 O3层 ,作为氮化硅烧结的助烧剂。包覆层改变了 Si3N4粉料的电动性和胶态特性 ,从而提高了 Si3N4的分散性。研究表明 ,经包覆和凝胶注模成型的方法所制备的氮化硅烧结体较冷等静压方法所获得的烧结体的抗弯强度和 Weibull模数都大大提高  相似文献   

15.
理想化学计量纳米氮化硅的制备   总被引:4,自引:0,他引:4  
本文研究了激光诱导化学气相沉积纳米氮化硅的制备工艺过程,提出了减少游离硅的措施,利用光学二步激励法得到了理想化学计量的高纯纳米氮化硅粉末,其N/Si比 1.321,非常接近于理想值4/3(1.333)。  相似文献   

16.
针对金属层间介质以及MEMS等对氧化硅薄膜的需求,介绍了采用等离子增强型化学气相沉积(PECVD)技术,以SiH4和N2O为反应气体,低温制备SiO2薄膜的方法.利用椭偏仪和应力测试系统对制得的SiO2薄膜的厚度、折射率、均匀性以及应力等性能指标进行了测试,探讨了射频功率、反应腔室压力、气体流量比等关键工艺参数对SiO2薄膜性能的影响.结果表明:SiO2薄膜的折射率主要由N2O/SiH4的流量比决定,而薄膜均匀性主要受电极间距以及反应腔室压力的影响.通过优化工艺参数,在低温260℃下制备了折射率为1.45~1.52、均匀性为±0.64%、应力在-350~-16MPa可控的SiO2薄膜.采用该方法制备的SiO2薄膜均匀性好、结构致密、沉积速率快、沉积温度低且应力可控,可广泛应用于集成电路以及MEMS器件中.  相似文献   

17.
等离子增强化学气相淀积法(PECVD)淀积的氮化硅薄膜具有沉积温度低、生长速率高、均匀性好等优点,在微电子机械系统(Micro-Electromechanical System,MEMS)中的应用越来越广泛,研究其应力状态对研制MEMS器件和系统具有重要意义.本文在大量实验的基础上,淀积出高压应力、低压应力、微应力、低...  相似文献   

18.
研究了激光诱导化学气相沉积法制备纳米氮化硅的工作原理,提出了减少游离硅的措施,利用双光束激发制备得到了超微的、非晶纳米氮化硅粉体。实验证明,纳米氮化硅粉体具有很多奇异物理性能和光谱特性。  相似文献   

19.
研究了加H2对SiH4/N2/Ar高密度、低离子能量的等离子体淀积的氮化硅薄膜(淀积的衬底温度为400℃)电学和光学性能的影响。实验结果表明,加入H2使氮化硅薄膜的光学带隙增加,其折射率以及在氢氟酸缓冲液中腐蚀速率减小,而XPS测试的N、Si原子比没有改变,均为1.3。FTIR测量表明,样品中Si-H键的密度低于仪器检测限,而添加H2的样品中N-H键密度稍增加。此外,由淀积的氮化硅膜构成的MIS结构的高频C-V测试(1 MHz)显示,当氢气流量从零增加到8sccm时,高频C-V的回滞幅度从(0.40±0.05)V降低到(0.10±0.01)V。基于这些实验结果和理论分析,表明了加适量H2能够促进弱的Si-Si键以及Si和N的悬挂键向Si-N键转化。  相似文献   

20.
低压CVD氮化硅薄膜的沉积速率和表面形貌   总被引:7,自引:0,他引:7  
以三氯硅烷(TCS)和氨气分别作为低压化学气相沉积(LPCVD)氮化硅薄膜(SiNx)的硅源和氮源,以高纯氮气为载气,在热壁型管式反应炉中,借助椭圆偏振仪和原子力显微镜,系统考察了工作总压力、反应温度、气体原料组成等工艺因素对SiNx薄膜沉积速率和表面形貌的影响.结果表明:随着工作压力的增大,SiNx薄膜的沉积速率逐渐增加,并产生一个峰值.随着原料气中NH3/TCS流量比值的增大,SiNx薄膜的沉积速率逐渐增加,随后逐步稳定.随着反应温度的升高,沉积速率逐渐增加,在830℃附近达到最大,随着反应温度的进一步升高,由于反应物的热分解反应迅速加剧,使得SiNx薄膜的沉积速率急剧降低.在730-830℃的温度范围内,沉积SiNx薄膜的反应表观活化能约为171kJ/mol.在适当的工艺条件下,制备的SiNx薄膜均匀、平整.较低的薄膜沉积速率有助于提高薄膜的均匀性,降低薄膜的表面粗糙度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号