首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
We report the structural and electrical properties of InAsSb epilayers grown on GaAs (0 0 1) substrates with mid-alloy composition of 0.5. InSb buffer layer and InAsxSb1−x step-graded (SG) buffer layer have been used to relax lattice mismatch between the epilayer and substrate. A decrease in the full-width at half-maximum (FWHM) of the epilayer is observed with increasing the thickness of the InSb buffer layer. The surface morphology of the epilayer is found to change from 3D island growth to 2D growth and the electron mobility of the sample is increased from 5.2×103 to 1.1×104 cm2/V s by increasing the thickness of the SG layers. These results suggest that high crystalline quality and electron mobility of the InAs0.5Sb0.5 alloy can be achieved by the growth of thick SG InAsSb buffer layer accompanied with a thick InSb buffer layer. We have confirmed the improvement in the structural and electrical properties of the InAs0.5Sb0.5 epilayer by quantitative analysis of the epilayer having a 2.09 μm thick InSb buffer layer and 0.6 μm thickness of each SG layers.  相似文献   

2.
Long-wavelength vertical cavity surface emitting lasers (VCSELs) are considered the best candidate for the future low-cost reliable light sources in fiber communications. However, the absence of high refractive index contrast in InP-lattice-matched materials impeded the development of 1.3–1.5 μm VCSELs. Although wafer fusions provided the alternative approaches to integrate the InP-based gain materials with the GaAs/AlAs materials for their inherent high refractive index contrast, the monolithic InP-based lattice-matched distributed Bragg reflectors (DBRs) are still highly attractive and desirable. In this report, we demonstrate InP/InGaAlAs DBRs with larger refractive index contrast than InP/InGaAsP and InAlAs/InGaAlAs DBRs. The switching between InP and InGaAlAs layers and growth rate control have been done by careful growth interruption technique and accurate in situ optical monitoring in low-pressure metal organic chemical vapor deposition. A 35 pairs 1.55 μm centered InP/InGaAlAs DBRs has the stopband of more than 100 nm and the highest reflectivity of more than 99%. A VCSEL structure incorporating 35 pairs InP/InGaAlAs DBR as the bottom mirror combined with a 2λ thick periodic gain cavity and 10 pairs SiO2/TiO2 top dielectric mirrors was fabricated. The VCSELs lased at 1.56 μm by optical pumping at room temperature with the threshold pumping power of 30 mW.  相似文献   

3.
In order to fabricate InGaAs/InP double-heterostructure (DH) lasers, a novel selectively embedded one-step growth by chemical beam epitaxy (CBE) was adopted. Before the selective CBE growth, 6–8 μm wide channels on an n-InP substrate were undercut by wet chemical etching through a 170 nm thick SiO2 film mask. A 6 μm wide stripe-geometry DH laser structure with an active layer of 0.14 μm thickness was grown selectively with good planarity into the channels and operated by a pulse.  相似文献   

4.
The growth and intersubband optical properties of high quality heavily doped p-type GaAs/AlGaAs multiple quantum well (MQW) structures are reported. The MQWs were fabricated by the atmospheric pressure metalorganic vapor phase epitaxy process using liquid CCl4 to dope the wells with C acceptors (Na ≈ 2 × 1019 cm−3). A constant growth temperature was maintained for the entire structure while different V/III ratios were used for the well and barrier regions. By this process it is possible to achieve both high C doping densities in the wells and to simultaneously obtain good quality AlGaAs barriers. Fourier transform infrared spectroscopy measurements on heavily doped 10-period MQW structures reveal a new absorption peak at 2 μm with an effective normal incidence absorption coefficient of 4000 cm−1. Photocurrent measurements on mesa-shaped diodes show a corresponding peak at 2.1 μm. The photodiodes exhibit a symmetrical current-voltage characteristic and a low dark current, which are indicative of a high quality MQW structure and a well-controlled C doping profile. The 2 μm absorption represents the shortest wavelength ever reported for any GaAs/AlGaAs or InGaAs/AlGaAs MQW structure and should be very useful for implementing multicolor infrared photodetectors.  相似文献   

5.
The suitability of an N2 carrier in LP-MOVPE of GaInAs/InP device structures and for the growth of (Al)GaInP is investigated for the first time. Al-free GaInAs/InP HEMTs and MSM photodetectors exhibit cutoff frequencies of ft = 135 GHz and fmax = 200 GHz and a bandwidth of 16 GHz and responsivity of 0.27 A/W, respectively. AlGaInP and GaInP layers deposited using the optimized growth conditions showed excellent structural, optical and homogeneity properties. For example X-ray diffractograms with FWHMs as low as 15–16 arcsec for 1 μm thick layers and 300 K photoluminescence mappings over full 2 inch wafers with standard deviations of ±0.23 and ±0.26 nm were obtained for both materials.  相似文献   

6.
In this paper, we will discuss how the unique growth chemistry of MOMBE can be used to produce high speed GaAs/AlGaAs heterojunction bipolar transistors (HBTs). The ability to grow heavily doped, well-confined layers with carbon doping from trimethylgallium (TMG) is a significant advantage for this device. However, in addition to high p-type doping, high n-type doping is also required. While elemental Sn can be used to achieve doping levels up to 1.5×1019 cm-3, severe segregation limits its use to surface contact layers. With tetraethyltin (TESn), however, segregation does not occur and Sn doping can be used throughout the device. Using these sources along with triethylgallium (TEG), trimethylamine alane (TMAA), and AsH3, we have fabricated Npn devices with 2 μm×10 μm emitter stripes which show gains of ≥ 20 with either ƒt = 55 GHz and ƒmax = 70 GHz or ƒt = 70 GHz and ƒmax = 50 GHz, depending upon the structure. These are among the best RF values reported for carbon doped HBTs grown by any method, and are the first reported for an all-gas source MOMBE process. In addition, we have fabricated a 70 transistor decision circuit whose performance at 10 Gb/s equals or exceeds that of similar circuits made from other device technologies and growth methods. These are the first integrated circuits reported from MOMBE grown material.  相似文献   

7.
通过固态源的分子束外延系统生长了调制掺杂AlGaAs/GaAs结构材料和InP/InP外延材料.在生长含磷材料之后,生长条件(真空状态)变差;我们通过采取合理的工艺方法和生长工艺条件的优化,获得了电子迁移率为1.86×105cm2/Vs(77K)调制掺杂AlGaAs/GaAs结构材料和电子迁移率为2.09×105cm2/Vs(77K)δ-Si掺杂AlGaAs/GaAs结构材料.InP/InP材料的电子迁移率为4.57×104 cm2/Vs(77K),该数值是目前国际报道最高迁移率值和最低的电子浓度的InP外延材料.成功地实现了在一个固态源分子束外延设备交替生长高质量的调制掺杂AlGaAs/GaAs结构材料和含磷材料.  相似文献   

8.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min.  相似文献   

9.
The damaging of 6H-SiC by ion implantation (Ar+, 320 keV) leads to the formation of a light-absorbing surface layer with a thickness of about 0.4 μm and a dielectric function which indicates a disordering of the crystal structure. Raman spectra show the existence of amorphous carbon, silicon and silicon carbide. Ion bombardment with 1.4 MeV He+ ions generates a 3 μm thick surface layer with small lattice distortions and light-absorbing centers and a 0.4 μm thick interface layer with a larger refractive index.  相似文献   

10.
We examine the relation between surface morphology and lattice distortions of a number of GaxIn1-xP epilayers (x ≈ 0.04) grown on InP (001) substrates using atomic force microscopy (AFM) and high resolution X-ray diffractometry (HRXRD). The heteroepitaxial layers (thickness ≈ μm) were grown by low pressure metalorganic vapour phase epitaxy (MOVPE) at temperatures from 600 to 660°C. AFM images over a scale of 75 μm by 75 μm show no surface corrugations for samples grown at 640°C. For other growth temperatures between 600 and 660°C, unidirectional corrugations aligned along the [1 0] direction or a cross-hatched pattern can be seen on the sample surfaces with a typical interline separation of 10 μm. Another feature revealed by AFM is the presence, for some samples, of weak parallel corrugations along the direction making a 54° angle with the [1 0] direction. HRXRD spectra recorded first with the [110] and then with the [1 0] direction in the plane of incidence reveal an asymmetric relaxation in the sample plane accompanied by a broadening of the epilayer X-ray peak for diffraction with the [110] direction in the plane of incidence. The lattice distortion changes from tetragonal to orthorhombic as the surface corrugations appear along the [1 0] direction. Proton microprobe scans indicate that these samples are compositionally uniform so that the asymmetry is not the result of lateral variations of the alloy composition. Finally, low temperature photoluminescence from these samples shows good agreement between observed and calculated peak positions on the basis of the strains obtained from HRXRD measurements.  相似文献   

11.
Low-pressure metalorganic vapor phase epitaxy (LP-MOVPE) growth of carbon doped (InGa)P/GaAs and InP/(InGa)As heterojunction bipolar transistors (HBT) is presented using a non-gaseous source (ngs-) process. Liquid precursors TBAs/TBP for the group-V and DitBuSi/CBr4 for the group-IV dopant sources are compared to the conventional hydrides AsH3/PH3 and dopant sources Si2H6/CCl4 while using TMIn/TEGa in both cases. The thermal decomposition of the non gaseous sources fits much better to the need of low temperature growth for the application of carbon doped HBT. The doping behavior using DitBuSi/CBr4 is studied by van der Pauw Hall measurements and will be compared to the results using Si2H6/CCl4. Detailed high resolution X-ray diffraction (HRXRD) analysis based on 004 and 002 reflection measurements supported by simulations using BEDE RADS simulator enable a non-destructive layer stack characterization. InGaP/GaAs HBT structures designed for rf-applications are grown at a constant growth temperature of Tgr=600°C and at a constant V/III-ratio of 10 for all GaAs layers. P-type carbon concentrations up to P = 5·1019cm−3 and n-type doping concentrations up to N = 7·1018cm−3 are achieved. The non self-aligned devices (AE = 3·10 μm2)_show excellent performance, like a dc-current gain of Bmax = 80, a turn on voltage of Voffset = 110 mV (Breakdown Voltage VCEBr,0 > 10 V), and radio frequency properties of fT/fmax = 65 GHz/59 GHz.

In the non-gaseous source configuration the strong reduction in the differences of V/III-ratios and temperatures during HBT structure growth enable easier LP-MOVPE process control. This is also found for the growth InP/InGaAs HBT where a high dc-current gain and high transit frequency of fT= 120 GHz are achieved.  相似文献   


12.
Application of InGaAs/InGaP double‐heterostructure (DH) lasers increases the band offset between the cladding layer and the active layer more than the use of conventional 1.3 µm InGaAsP/InP lasers. As a first step in realizing 1.3 µm InGaP/InGaAs/InGaP DH lasers, we proposed InGaP lattice‐mismatched epitaxial lateral overgrowth (ELO) technique and successfully carried out the InGaP growth on both GaAs (100), (111)B and InP (100) substrates by liquid phase epitaxy. In this work, we grew the InGaP crystal on GaAs (111)B substrate by adjusting Ga and P composition in In solution, to obtain In0.79Ga0.21P (λ = 820 nm) virtual substrate for 1.3 µm InGaAs/InGaP DH lasers. To grow the InGaP all over the lateral surface of the substrate, the growth time was extended to 6 hours. The amount of InGaP lateral growth up to 2 hours was gradually increased, but the lateral growth was saturated. The InGaP lateral width was about 250 µm at the growth time of 6 hours. We report the result that optical microscope observation, CL and X‐ray rocking curve measurements and reciprocal lattice space mapping were carried out to evaluate the crystal quality of the grown InGaP layers. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
GaN膜在传统生长过程中主要通过异质外延获得,这往往会产生晶格失配和热失配,给GaN带来严重的位错和应力。目前降低位错最广泛的方法是使用侧向外延技术。在这项工作中,首先在蓝宝石基GaN衬底上沉积了一层SiO2,并用光刻的方法将其制备成高掩膜宽度(窗口宽度20 μm/掩膜宽度280 μm)的宽周期掩膜,再通过氢化物气相外延(HVPE)侧向外延了厚度为325 μm的GaN厚膜,通过胶带可以将其进行剥离形成自支撑衬底。同时通过二维的Wulff结构图研究了GaN生长过程中晶面的变化趋势。宽周期掩膜法对于生长可剥离的低位错密度自支撑GaN有着重大意义。  相似文献   

14.
High-quality CdTe(100) layers grown on GaAs(100) substrates by hot-wall epitaxy using a gold tube radiation shield are reported for the first time. From the investigation of thermal properties, we find that the gold tube radiation shield is more effective in heat confinement and temperature stability than a stainless steel tube radiation shield. The CdTe lattice parameters perpendicular to the interface decrease as the layer thickness increases by strain relaxation. We obtain 89 arc sec full width at half maximum of the X-ray double-crystal rocking curve for a 15 μm thick CdTe layer which is the smallest value reported to date. Exciton emission and donor-acceptor pair emission along with longitudinal optical (LO) phonon replicas are obtained from PL measurements, confirming the good quality of the crystal.  相似文献   

15.
InP layers were grown by chemical beam epitaxy (CBE) using high purity thermally precracked tertiarybutylphosphine (TBP) and trimethylindium (TMI) as the source of the group III element. For optimized substrate temperature and V/III ratio, InP films of good electrical and optical quality have been obtained; the n-type background carrier concentration is (1–2) × 1015 cm-3, with a Hall mobility at 77 K being μ77 = 45,000 cm2 V-1 s-1. Given the low value of the V/III ratio, and according to mass spectrosc measurements, the phosphorus species giving rise to epitaxy is expected to be the dimer P2. The TBP consumption in CBE is very low when compared to organometallic vapour phase epitaxy (OMVPE), typicaly below 0.25 g/μm of InP layer.  相似文献   

16.
ZnS1−xTex epilayers were grown on GaAs(1 0 0) substrates by hot-wall epitaxy in a wide range of Te composition. The Te composition was determined by Rutherford backscattering spectrometry and the lattice constant was measured by double-crystal rocking curve. It was found that the lattice of the epilayer matches well with that of the substrate at x=0.37 as expected by Vegard's rule, and the energy gap was also determined as a function of Te composition by spectrophotometer. It showed that a quadratic relation with the composition: Eg(x)=3.71−5.27x+3.83x2. Photoluminescence characteristics were also studied.  相似文献   

17.
High-quality InGaAs layers were successfully grown on patterned GaAs (1 1 1) A substrates masked with SiNx film. It was found that a trench depth 55 μm was required to grow a InGaAs bridge layer over the trench. However, the InGaAs also grew from the trench bottom, which joined the central part of the bridge layer. Consequently, the quality of the bridge layer was degraded. The growth of InGaAs from the trench bottom was suppressed by depositing a SiNx film on the trench bottom, and as a result InGaAs layer formed a clean bridge over the trench. A low etch pit density and highly intense with sharp FWHM photoluminescence spectra obtained for bridge layers confirmed their high quality.  相似文献   

18.
This study reports on the selective area growth of InP/GaInAsP layers and heterostructures by metaloganic molecular beam epitaxy (MOMBE). It was found that neither the growth rate nor the material composition for GaInAsP depends on the area where material growth takes place. This enables a flexible SiO2 mask to be designed independent of the aspect ratio. The use of slightly misoriented substrates allows the selective growth of planar structures having nearly perfectly vertical side walls even for 2 μm thick layers or narrow stripes to take place.  相似文献   

19.
Structural analyses are reported of 5 μm thick VOPc films grown on a KBr(001) surface by the MBE technique. The crystal is monoclinic with lattice parameters a = 14.2 Å, b = 13.1 Å, c = 12.7 Å and β = 103.2°. The orientation of the unit cell is influenced by the crystal lattice of the substrate even in this thickness range: The projections of the a- and b-axes of VOPc onto the (001) plane of KBr coincide with the [110] directions of KBr. Four kinds of crystal orientations were observed in pole figure measurements.  相似文献   

20.
The vapor phase epitaxy of thin epilayers of VO2 and V1−xCrxO2 on TiO2 transparent substrates is described. Chemical vapor deposition occurs by reacting a (VOCL3/CrO2Cl2/H2O/H2) mixture at about 800°C using argon as a carrier gas. The preparation of pure VO2 requires special care to make it homogeneously stoichiometric and to obtain steep concentration profiles at the TiO2/VO2 interface. Layers were obtained which had electrical and optical properties comparable to the best bulk crystals grown by other techniques. Homogeneous solid solutions of V1−xCrxO2 epilayers were also grown for the first time in the range o < x < 0.17. Chromium concentration and homogeneity were determined by electron microprobe analysis. The separation coefficient k was also found to vary with x. It is close to unity below x = 0.001 and above this value Cr is incorporated more easily. High quality heteroepitaxial layers (1 cm2 area, 1 to 30 μm thickness) of V1−xCrxO2 have for the first time allowed the measurement of the optical absorption coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号