首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The mechanism of the heparin-promoted reaction of thrombin with antithrombin III was investigated by using covalent complexes of antithrombin III with either high-affinity heparin (Mr = 15,000) or heparin fragments having an average of 16 and 12 monosaccharide units (Mr = 4,300 and 3,200). The complexes inhibit thrombin in the manner of active site-directed, irreversible inhibitors: (Formula: see text) That is, the inhibition rate of the enzyme is saturable with respect to concentration of complexes. The values determined for Ki = (k-1 + k2)/k1 are 7 nM, 100 nM, and 6 microM when the Mr of the heparin moieties are 15,000, 4,300, 3,200, respectively, whereas k2 (2 S-1) is independent of the heparin chain length. The bimolecular rate constant k2/Ki for intact heparin is 3 X 10(8) M-1 S-1 and the corresponding second order rate constant k1 is 6.7 X 10(8) M-1 S-1, a value greater than that expected for a diffusion-controlled bimolecular reaction. The bimolecular rate constants for the complexes with heparin of Mr = 4,300 and 3,200 are, respectively, 2 X 10(7) M-1 S-1 and 3 X 10(5) M-1 S-1. Active site-blocked thrombin is an antagonist of covalent antithrombin III-heparin complexes: the effect is monophasic and half-maximum at 4 nM of antagonist against the complex with intact heparin, whereas the effect is weaker against complexes with heparin fragments and not monophasic. We conclude that virtually all of the activity of high affinity, high molecular weight heparin depends on binding both thrombin and antithrombin III to heparin, and that the exceptionally high activity of heparin results in part from the capacity of thrombin bound nonspecifically to heparin to diffuse in the dimension of the heparin chain towards bound antithrombin III. Increasing the chain length of heparin results in an increased reaction rate because of a higher probability of interaction between thrombin and heparin in solution.  相似文献   

2.
The synthetic antithrombin-binding heparin pentasaccharide and a full-length heparin of approximately 26 saccharides containing this specific sequence have been compared with respect to their interactions with antithrombin and their ability to promote inhibition and substrate reactions of antithrombin with thrombin and factor Xa. The aim of these studies was to elucidate the pentasaccharide contribution to heparin's accelerating effect on antithrombin-proteinase reactions. Pentasaccharide and full-length heparins bound antithrombin with comparable high affinities (KD values of 36 +/- 11 and 10 +/- 3 nM, respectively, at I 0.15) and induced highly similar protein fluorescence, ultraviolet and circular dichroism changes in the inhibitor. Stopped-flow fluorescence kinetic studies of the heparin binding interactions at I 0.15 were consistent with a two-step binding process for both heparins, involving an initial weak encounter complex interaction formed with similar affinities (KD 20-30 microM), followed by an inhibitor conformational change with indistinguishable forward rate constants of 520-700 s-1 but dissimilar reverse rate constants of approximately 1 s-1 for the pentasaccharide and approximately 0.2 s-1 for the full-length heparin. Second order rate constants for antithrombin reactions with thrombin and factor Xa were maximally enhanced by the pentasaccharide only 1.7-fold for thrombin, but a substantial 270-fold for factor Xa, in an ionic strength-independent manner at saturating oligosaccharide. In contrast, the full-length heparin produced large ionic strength-dependent enhancements in second order rate constants for both antithrombin reactions of 4,300-fold for thrombin and 580-fold for factor Xa at I 0.15. These enhancements were resolvable into a nonionic component ascribable to the pentasaccharide and an ionic component responsible for the additional rate increase of the larger heparin. Stoichiometric titrations of thrombin and factor Xa inactivation by antithrombin, as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the products of these reactions, indicated that pentasaccharide and full-length heparins similarly promoted the formation of proteolytically modified inhibitor during the inactivation of factor Xa by antithrombin, whereas only the full-length heparin was effective in promoting this substrate reaction of antithrombin during the reaction with thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Lin Y  Pixley RA  Colman RW 《Biochemistry》2000,39(17):5104-5110
Previous investigations have shown that HK and its light chain bind heparin, preventing the enhancement of antithrombin inhibition of thrombin and potentiating the inhibition of plasma kallikrein by antithrombin. We found that both HK and HKa bound heparin, but HK exhibited a greater affinity. We therefore localized the binding sites for heparin on HK. HK domains 5 and 6 of the light chain as well as domain 3 from the heavy chain, expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli, were tested for binding to immobilized heparin by surface plasmon resonance using a BiaCore 2000 instrument. GST-D5, but not GST-D3, GST-D6, or GST, bound to heparin when the recombinant domains were present at a concentration of 70 nM. To localize more precisely the amino acid sequences on D5, both of the subdomains, histidine-glycine-rich GST-(K420-D474) and histidine-glycine-lysine-rich GST-(H475-S626), were expressed and tested for binding to immobilized heparin. The K(d) was much lower for GST-(K420-D474) than for GST-(H475-S626) in the presence or absence of Zn(2+). GST-(K420-D474) was effective in decreasing the rate of inactivation of thrombin by antithrombin in the presence of heparin and Zn(2+), while GST-(H475-S626) had no effect. We conclude that the binding of heparin to HK is a complex function of Zn(2+) interacting with histidines in the sequence K420-D474 to create high-affinity binding sites. HK has the potential to be an important modulator of heparin therapy.  相似文献   

4.
The effect of various well-characterized heparin preparations on the inactivation of human Factor XIa by human antithrombin III was studied. The heparin preparations used were unfractionated heparin and four heparin fractions obtained after anion-exchange chromatography. Inactivation of Factor XIa was monitored with S2366 as chromogenic substrate and followed pseudo-first-order reaction kinetics under all reaction conditions tested. Enhancement of the rate of inhibition of Factor XIa in the presence of unfractionated heparin correlated to the binding of antithrombin III to heparin. From the kinetic data a binding constant of 0.1 microM was inferred. The maximum rate enhancement, achieved at saturating heparin concentrations, was 30-fold. The rate enhancement achieved in the presence of each of the heparin fractions could also be correlated to the binding of antithrombin III to the heparin. The binding constant inferred from the kinetic data varied from 0.10 to 0.28 microM and the number of binding sites for antithrombin III varied from 0.06 to 0.74 site per heparin molecule. The maximum rate enhancements, achieved at saturating heparin concentrations, were strongly dependent on the type of heparin used and varied from 7-fold for fraction A to 41-fold for fraction D. Therefore, although the stimulation of Factor XIa inactivation by antithrombin III could be quantitatively correlated to the binding of antithrombin III to heparin, the heparin-catalysed inhibition of Factor XIa is dependent not only upon the degree of binding of antithrombin III to heparin but also upon the type of heparin to which antithrombin III is bound.  相似文献   

5.
Human neutrophil elastase catalyzes the inactivation of antithrombin by a specific and limited proteinolytic cleavage. This inactivation reaction is greatly accelerated by an active anticoagulant heparin subfraction with high binding affinity for antithrombin. A potentially complex reaction mechanism is suggested by the binding of both neutrophil elastase and antithrombin to heparin. The in vitro kinetic behavior of this system was examined under two different conditions: 1) at a constant antithrombin concentration in which the active anticoagulant heparin was varied from catalytic to saturating levels; and 2) at a fixed, saturating heparin concentration and variable antithrombin levels. Under conditions of excess heparin, the inactivation could be continuously monitored by a decrease in the ultraviolet fluorescence emission of the inhibitor. A Km of approximately 1 microM for the heparin-antithrombin complex and a turnover number of approximately 200/min was estimated from these analyses. Maximum acceleratory effects of heparin on the inactivation of antithrombin occur at heparin concentrations significantly lower than those required to saturate antithrombin. The divergence in acceleratory effect and antithrombin binding contrasts with the anticoagulant functioning of heparin in promoting the formation of covalent antithrombin-enzyme complexes and is likely to derive from the fact that neutrophil elastase is not consumed in the inactivation reaction. A size dependence was observed for the heparin effect since an anticoagulantly active octasaccharide fragment of heparin, with avid antithrombin binding activity, was without effect on the inactivation of antithrombin by neutrophil elastase. Despite the completely nonfunctional nature of elastase-cleaved antithrombin and the altered physical properties of the inhibitor as indicated by fluorescence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the inactivated inhibitor exhibited a circulating half-life in rabbits that was indistinguishable from native antithrombin. These results point to an unexpected and apparently contradictory function for heparin which may relate to the properties of the vascular endothelium in pathological situations.  相似文献   

6.
The present study has shown that calcium inhibits the heparin-catalyzed antithrombin III/thrombin reaction. The initial rate of thrombin (4.0 nM) inhibition by antithrombin III (200 nM) in the presence of heparin (2.5 ng/ml) decreased from 3.6 nM/min (in the absence of calcium) to 0.12 nM/min in the presence of 10 mM calcium. In the absence of heparin, the initial rate of thrombin inhibition by antithrombin III was not affected by calcium. The heparin-catalyzed antithrombin III/thrombin reaction is described by the general rate equation for a random-order, bireactant, enzyme-catalyzed reaction (M. J. Griffith (1982) J. Biol. Chem. 257, 13899-13902). As such, the reaction is saturable with respect to both thrombin and antithrombin III. The apparent kinetic parameters for the heparin-catalyzed antithrombin III/thrombin reaction were determined in the presence and absence of calcium. The apparent heparin/antithrombin III dissociation constant values were not measurably different in the presence of 0, 1.0, and 3.0 mM calcium. The apparent heparin/thrombin dissociation constant value increased from 7.0 nM, in the absence of calcium, to 10 and 30 nM in the presence of 1.0 and 3.0 mM calcium, respectively. The maximum reaction velocity, at saturation with respect to both proteins, was not affected by calcium. It is concluded that calcium binds to functional groups within the heparin molecule which are required for thrombin binding.  相似文献   

7.
A novel variant of antithrombin, the major serpin inhibitor of coagulation proteases, has been identified in a patient with early onset thrombosis and abnormal plasma antithrombin activity. Sequencing of the antithrombin genes of the patient revealed that one of the two alleles was abnormal due to an in-frame deletion of the codon for the P1 arginine residue. The abnormal antithrombin was separated from the normal inhibitor by complexing the latter with thrombin followed by heparin-agarose affinity chromatography. The purified variant, antithrombin London, was completely inactive as a thrombin or factor Xa inhibitor even after heparin activation. Surprisingly, the variant bound heparin with a K(D) reflecting an approximately 10-fold greater affinity than the normal inhibitor. Stopped-flow kinetic analysis showed that this was almost entirely due to a more favorable conformational activation of the variant than the normal inhibitor, as reflected by a decreased rate constant for reversal of the activation. Consistent with its higher than normal heparin affinity, the inactive antithrombin variant was a potent competitive antagonist of the heparin-catalyzed reaction of normal antithrombin with thrombin but did not affect the uncatalyzed reaction. These results suggest that deletion of the antithrombin P1 residue partially activates the serpin by inducing strain in the reactive center loop, which destabilizes the native loop-buried state and favors the activated loop-exposed state with high heparin affinity. The unusually severe thrombosis associated with the heterozygous mutation may be explained by the ability of antithrombin London to bind endogenous heparan sulfate or heparin molecules with high affinity and to thereby block activation of the normal inhibitor.  相似文献   

8.
Endothelial cells expose specific receptors for blood clotting factors and, upon perturbation, can initiate and propagate the reactions of the extrinsic pathway of blood coagulation leading to fibrin formation on the cell surface. The existence of an intrinsic mechanism of Factor IX activation on cultured human umbilical vein cells (HUVECs) was investigated by studies of the interaction between HUVECs and two proteins of the contact activation system, the cofactor high molecular weight kininogen (H-kininogen) and the zymogen Factor XI. In the presence of zinc ions (10-300 microM), 125I-labeled H-kininogen bound to HUVECs in a time-dependent, reversible, and saturable manner, with calcium ions exerting an inhibitory effect on the zinc-dependent binding. Analysis of the binding data by the LIGAND computer program indicated that HUVECs, in the presence of 2 mM CaCl2 and 100 microM ZnCl2 at 37 degrees C, bound 1.14 x 10(7) H-kininogen molecules per cell with an apparent dissociation constant of 55 nM. HUVEC-bound H-kininogen functions as the cell surface receptor for both 125I-labeled Factor XI and 125I-labeled Factor XIa, since HUVECs cultured in contact factor-depleted serum do not detectably bind either the zymogen or the enzyme in the absence of H-kininogen and zinc ions. In the presence of saturating concentrations of H-kininogen, 2 mM CaCl2 and 100 microM ZnCl2, the binding of 125I-labeled Factor XI and Factor XIa to HUVECs was time-dependent, reversible, and saturable, with apparent dissociation constants of 4.5 and 1.5 nM, respectively. HUVEC-bound complexes of H-kininogen and Factor XI generated Factor XIa activity only after the addition of purified Factor XIIa, and cell-bound Factor XIa in turn activated Factor IX, as documented by a 3H-labeled activation peptide release assay for 3H-Factor IX activation. The results indicate that cultured HUVECs provide a surface for the assembly and expression of an intrinsic Factor IX activator complex that may participate in the initiation of blood coagulation at sites of vascular injury.  相似文献   

9.
The effect of bovine thrombomodulin on the specificity of bovine thrombin   总被引:8,自引:0,他引:8  
Bovine lung thrombomodulin is purified and used to investigate the basis of the change in substrate specificity of bovine thrombin when bound to thrombomodulin. Bovine thrombomodulin is a single polypeptide having an apparent molecular weight of 84,000 and associates with thrombin with high affinity and rapid equilibrium, to act as a potent cofactor for protein C activation and antagonist of reactions of thrombin with fibrinogen, heparin cofactor 2, and hirudin. Bovine thrombomodulin inhibits the clotting activity of thrombin with Kd less than 2.5 nM. Kinetic analysis of the effect of bovine thrombomodulin on fibrinopeptide A hydrolysis by thrombin indicates competitive inhibition with Kis = 0.5 nM. The active site of thrombin is little perturbed by thrombomodulin, as tosyl-Gly-Pro-Arg-p-nitroanilide hydrolysis and inhibition by antithrombin III are unaffected. Insensitivity of the reaction with antithrombin III is likewise observed with thrombin bound to thrombomodulin on intact endothelium. Antithrombin III-heparin, human heparin cofactor 2, and hirudin inhibit thrombin-thrombomodulin more slowly than thrombin. These effects may arise from a decrease in Ki of the inhibitors for thrombin-thrombomodulin or from changes in the active site not detected by tosyl-Gly-Pro-Arg-p-nitroanilide or antithrombin III. Bovine prothrombin fragment 2 inhibits thrombin clotting activity (Kd less than 7.5 microM) and acts as a competitive inhibitor of protein C activation (Kis = 2.1 microM). The data are consistent with a mechanism whereby thrombomodulin alters thrombin specificity by either binding to or allosterically altering a site on thrombin distinct from the catalytic center required for binding or steric accommodation of fibrinogen, prothrombin fragment 2, heparin cofactor 2, and hirudin.  相似文献   

10.
Aagaard A  Brzezinski P 《FEBS letters》2001,494(3):157-160
Cytochrome c oxidase is a membrane-bound enzyme that catalyses the reduction of O2 to H2O and uses part of the energy released in this reaction to pump protons across the membrane. We have investigated the effect of addition of Zn2+ on the kinetics of two reaction steps in cytochrome c oxidase that are associated with proton pumping; the peroxy to oxo-ferryl (P(r)-->F) and the oxo-ferryl to oxidised (F-->O) transitions. The Zn2+ binding resulted in a decrease of the F-->O rate from 820 s(-1) (no Zn2+) to a saturating value of approximately 360 s(-1) with an apparent K(D) of approximately 2.6 microM. The P(r)-->F rate (approximately 10[(4) s(-1)] before addition of Zn2+) decreased more slowly with increasing Zn2+ concentration and a K(D) of approximately 120 microM was observed. The effects on both kinetic phases were fully reversible upon addition of EDTA. Since both the P(r)-->F and F-->O transitions are associated with proton uptake through the D-pathway, a Zn2+-binding site is likely to be located at the entry point of this pathway, where several carboxylates and histidine residues are found that may co-ordinate Zn2+.  相似文献   

11.
The kininogens, high molecular weight kininogen (HK) and low molecular weight kininogen (LK), are multifunctional, single-gene products that contain bradykinin and identical amino-terminal heavy chains. Studies were performed to determine if LK would bind directly to platelets. 125I-LK specifically bound to gel-filtered platelets in the presence of 50 microM Zn2+. HK effectively competed with 125I-LK for the same binding site (Ki = 27 +/- 9 nM, n = 5). Similarly, the Ki for LK inhibition of 125I-LK binding was 12 +/- 1 nM (n = 3). Albumin, fibrinogen, factor XIII, and kallikrein did not inhibit 125I-LK binding to unstimulated platelets. 125I-LK (66 kDa) was not cleaved upon binding to platelets. The binding of 125I-LK to unstimulated platelets was found to be fully reversible by the addition of a 50 molar excess of unlabeled LK at both 10 and 20 min. LK binding to platelets was saturable with an apparent Kd of 27 +/- 2 nM (mean +/- S.E., n = 9) and 647 +/- 147 binding sites/platelet. Both LK and HK at plasma concentrations inhibited thrombin-induced platelet aggregation. LK and HK at about 5% of plasma concentration also inhibited thrombin-induced secretion of both stirred and unstirred platelets. Both kininogens were found to be noncompetitive inhibitors of proteolytically active thrombin binding to platelets. The kininogens did not inhibit D-phenylalanyl-prolyl-arginine chloromethyl ketone-treated thrombin from binding to platelets. These studies indicated that both kininogens have a region on their heavy chain which allows them to bind to platelets. Further, kininogen binding by its heavy chain modulates thrombin activation of platelets since it prevents proteolytically active thrombin from binding to its receptor.  相似文献   

12.
The kinetics of inhibition of human alpha-thrombin and coagulation Factor Xa by antithrombin III were examined under pseudo-first-order reaction conditions as a function of the concentration of heparan sulphate with high affinity for antithrombin III. The maximum observed second-order rate constant was, for the antithrombin III-thrombin reaction, 1.2 x 10(9) M-1.min-1 compared with 2.4 x 10(9) M-1.min-1 in the presence of high-affinity heparin. However, the maximum rate was catalysed by much higher concentrations of heparan sulphate (1.3 microM) than of heparin (0.025 microM). Differences were also observed in the maximal acceleration of the antithrombin III-Factor Xa interaction: 1.2 x 10(9) M-1.min-1 at 0.2 microM-heparin sulphate compared with 2.2 x 10(9) M-1.min-1 at 0.04 microM-heparin. The differences in properties of heparan sulphate and heparin were analysed by using the random bi-reactant model of heparin action [Griffith (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 5460-5464]. It was observed that the apparent binding affinity for thrombin was higher for heparan sulphate (180 nM) than for heparin (14 nM). The rate constant for transformation of the antithrombin III-Factor Xa complex into irreversible product differed between heparan sulphate (96 min-1) and heparin (429 min-1). These properties of the high-affinity heparan sulphate may be of importance in consideration of a putative role in the control of intravascular haemostasis.  相似文献   

13.
A fragment of antithrombin that binds both heparin and thrombin.   总被引:1,自引:1,他引:0       下载免费PDF全文
In order to identify the regions of antithrombin that interact with heparin and thrombin, it was degraded with CNBr and the activities of the isolated products were investigated. These fragments did not exhibit direct thrombin-neutralizing activity; however, one unique fragment was found to bind to heparin-Sepharose and also to interfere with the inhibition of thrombin by intact antithrombin. This fragment was identified as the one consisting of three disulphide-linked polypeptide chains containing residues 1-17, 104-251 and 424-432. At a concentration of 46 nM, this product decreased the heparin-enhanced thrombin-inhibitory activity of antithrombin by half, and completely abolished this inhibition when above 300 nM. In the absence of heparin, the action of antithrombin was not completely nullified by the fragment, even when present at relatively high concentrations. At a given fragment concentration, the extent of inhibition was independent of antithrombin concentration over the range tested. It was found that the fragment decreased the second-order rate constant for the antithrombin-thrombin reaction. Reduction and alkylation of the fragment showed that the above properties reside primarily in the peptide with residues 104-251. It is concluded that this peptide possesses portions of the antithrombin molecule that bind to heparin as well as to a site on thrombin.  相似文献   

14.
The kinetics of alpha-factor Xa inhibition by antithrombin III (AT) were studied in the absence and presence of heparin (H) with high affinity for antithrombin by stopped-flow fluorometry at I 0.3, pH 7.4 and 25 degrees C, using the fluorescence probe p-aminobenzamidine (P) and intrinsic protein fluorescence to monitor the reactions. Active site binding of p-aminobenzamidine to factor Xa was characterized by a 200-fold enhancement and 4-nm blue shift of the probe fluorescence emission spectrum (lambda max 372 nm), 29-nm red shift of the excitation spectrum (lambda max 322 nm), and dissociation constant (KD) of about 80 microM. Under pseudo-first order conditions [( AT]0, [H]0, [P]0 much greater than [Xa]0), the observed factor Xa inactivation rate constant (kobs) measured by p-aminobenzamidine displacement or residual enzymatic activity increased linearly with the "effective" antithrombin concentration (i.e. corrected for probe competition) up to 300 microM in the absence of heparin, indicating a simple bimolecular process with a rate constant of 2.1 x 10(3) M-1 s-1. In the presence of heparin, a similar linear dependence of kobs on effective AT.H complex concentration was found up to 25 microM whether the reaction was followed by probe displacement or the quenching of AT.H complex protein fluorescence due to heparin dissociation, consistent with a bimolecular reaction between AT.H complex and free factor Xa with a 300-fold enhanced rate constant of 7 x 10(5) M-1 s-1. Above 25 microM AT.H complex, an increasing dead time displacement of p-aminobenzamidine and a downward deviation of kobs from the initial linear dependence on AT.H complex concentration were found, reflecting the saturation of an intermediate Xa.AT.H complex with a KD of 200 microM and a limiting rate of Xa-AT product complex formation of 140 s-1. Kinetic studies at catalytic heparin concentrations yielded a kcat/Km for factor Xa at saturating antithrombin of 7 x 10(5) M-1 s-1 in agreement with the bimolecular rate constant obtained in single heparin turnover experiments. These results demonstrate that 1) the accelerating effect of heparin on the AT/Xa reaction is at least partly due to heparin promoting the ordered assembly of antithrombin and factor Xa in an intermediate ternary complex and that 2) heparin catalytic turnover is limited by the rate of conversion of the ternary complex intermediate to the product Xa-AT complex with heparin dissociation occurring either concomitant with this step or in a subsequent faster step.  相似文献   

15.
Fucoidan, poly(L-fucopyranose) linked primarily alpha 1----2 with either a C3- or a C4-sulfate, is an effective anticoagulant in vitro and in vivo (Springer, G. F., Wurzel, H. A., McNeal, G. M., Jr., Ansell, N. J., and Doughty, M. F. (1957) Proc. Soc. Exp. Biol. Med. 94, 404-409). We have determined the antithrombin effects of fucoidan on the glycosaminoglycan-binding plasma proteinase inhibitors antithrombin III and heparin cofactor II. Fucoidan enhances the heparin cofactor II-thrombin reaction more than 3500-fold. The apparent second-order rate constant of thrombin inhibition by heparin cofactor II increases from 4 x 10(4) (in the absence of fucoidan) to 1.5 x 10(8) M-1 min-1 as the fucoidan concentration increases from 0.1 to 10 micrograms/ml and then decreases as fucoidan is increased above 10 micrograms/ml. The fucoidan reaction with heparin cofactor II-thrombin is kinetically equivalent to a "template model." Apparent fucoidan-heparin cofactor II and fucoidan-thrombin dissociation constants are 370 and 1 nM, respectively. The enhancement of thrombin inhibition by fucoidan, like heparin and dermatan sulfate, is eliminated by selective chemical modification of lysyl residues either of heparin cofactor II or of thrombin. The fucoidan-antithrombin III reactions with thrombin and factor Xa are accelerated maximally 285- and 35-fold at fucoidan concentrations of 30 and 500 micrograms/ml, respectively. Using human plasma and 125I-labeled thrombin in an ex vivo system, the heparin cofactor II-thrombin complex is formed preferentially over the antithrombin III-thrombin complex in the presence of 10 micrograms/ml fucoidan. Our results indicate that heparin cofactor II is activated by fucoidan in vitro and in an ex vivo plasma system and suggest that the major antithrombin activity of fucoidan in vivo is mediated by heparin cofactor II and not by antithrombin III.  相似文献   

16.
Active site blocked-thrombin, prepared by reacting thrombin with valyl-isoleucyl-prolyl-arginine chloromethyl ketone, inhibits the heparin enhanced-antithrombin III/thrombin reaction. Since active site blocked-thrombin does not interact with antithrombin III it was concluded that active site blocked-thrombin was competing for heparin in the reaction system. The heparin concentration dependence for maximum enhancement of the antithrombin III/thrombin reaction in the presence and absence of active site blocked-thrombin indicated that heparin was binding to thrombin to enhance the reaction rate. A dissociation constant value of 6.4×10?9M was estimated for the heparin·thrombin complex which is similar to the value of 5.8×10?9M previously reported (Griffith M.J. (1979)J. Biol. Chem. in press). Antithrombin III·thrombin complexes were also found to bind heparin with an affinity equivalent to thrombin. The results were interpreted to indicate that heparin binds to thrombin as the first step in the mechanism of action of heparin in enhancing the antithrombin III/thrombin reaction.  相似文献   

17.
We have determined the rate constants of inactivation of factor Xa and thrombin by antithrombin III/heparin during the process of prothrombin activation. The second-order rate constant of inhibition of factor Xa alone by antithrombin III as determined by using the synthetic peptide substrate S-2337 was found to be 1.1 X 10(6) M-1 min-1. Factor Xa in prothrombin activation mixtures that contained prothrombin, and either saturating amounts of factor Va or phospholipid (20 mol % dioleoylphosphatidylserine/80 mol % dioleoylphosphatidylcholine, 10 microM), was inhibited by antithrombin III with a second-order rate constant that was essentially the same: 1.2 X 10(6) M-1 min-1. When both factor Va and phospholipid were present during prothrombin activation, factor Xa inhibition by antithrombin III was reduced about 10-fold, with a second-order rate constant of 1.3 X 10(5) M-1 min-1. Factor Xa in the prothrombin activation mixture that contained both factor Va and phospholipid was even more protected from inhibition by the antithrombin III-heparin complex. The first-order rate constants of these reactions at 200 nM antithrombin III and normalized to heparin at 1 microgram/mL were 0.33 and 9.5 min-1 in the presence and absence of factor Va and phospholipid, respectively. When the prothrombin concentration was varied widely around the Km for prothrombin, this had no effect on the first-order rate constants of inhibition. It is our conclusion that factor Xa when acting in prothrombinase on prothrombin is profoundly protected from inhibition by antithrombin III in the absence as well as in the presence of heparin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

19.
The catalysis by heparin of the reaction between thrombin and antithrombin   总被引:1,自引:0,他引:1  
Fluorescence polarization has been used to study the kinetics of the combination of thrombin with antithrombin and its catalysis by the polysaccharide heparin. The heparin-catalysed combination of thrombin and antithrombin is saturable with respect to both thrombin and antithrombin. The rate-determining step of the reaction is approximately 1.7 s-1. The kinetics observed can be explained by proposing that the catalyst of the reaction is not heparin alone but a complex of heparin and antithrombin (bound at the high-affinity site). The temperature dependence of the heparin-catalysed reaction is indistinguishable from that of the uncatalysed reaction. This coincidence is consistent with the rate-limiting step being the same in both cases.  相似文献   

20.
Multiple complexes of thrombin and heparin   总被引:2,自引:0,他引:2  
Fluorescence polarization has been used to study the interaction of thrombin and heparin, and the catalysis by heparin of the combination of thrombin and antithrombin. At low ionic strength (20 mM Tris, pH 7.4), the addition of heparins of known molecular weights to thrombin led to the formation of large complexes (defined as 'complex 1'). Further addition of heparin led to a rearrangement of these large complexes to form smaller complexes (defined as 'complex 2'). The molar ratio of thrombin to heparin in complex 1 increased with increasing heparin molecular weight, and corresponded to one thrombin molecule for every heparin segment of Mr 3000. The stoichiometry of complex 2 was 1 heparin to 1 thrombin, irrespective of the heparin molecular weight. At higher ionic strength (150 mM NaCl) some complex 1 was still formed. However, by reversing the titration and adding thrombin to fluorescein-heparin the dissociation constant for complex 2 was estimated to be 1-3 microM and independent of the heparin molecular weight. The complex formed between thrombin and heparin, to which antithrombin was attached, has a dissociation constant of 1-2 microM, again irrespective of the heparin molecular weight. In the heparin-catalysed thrombin-antithrombin reaction, an increase in the size of heparin leads to a lowering of the observed Km for thrombin. A possible explanation is that thrombin, after initial binding to the heparin, moves rapidly to the site where it combines with antithrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号