首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Cherfils  P Vachette  P Tauc    J Janin 《The EMBO journal》1987,6(9):2843-2847
Mutation pAR5 replaces residues 145'-153' at the C terminus of the regulatory (r) chains of Escherichia coli ATCase by a new sequence of six residues. The mutated enzyme has been shown to lack substrate cooperativity and inhibition by CTP. Solution X-ray scattering curves demonstrate that, in the absence of ligands, its structure is intermediate between the T form and the R form. In the presence of N-phosphonacetyl-L-aspartate, the mutant is similar to the wild type. An examination of the crystal structure of unligated ATCase reveals that the mutated site is at an interface between r and catalytic (c) chains, which exists only in the T allosteric form. A computer simulation by energy minimization suggests that the pAR5 mutation destabilizes this interface and induces minor changes in the tertiary structure of r chains. The resulting lower stability of the T form explains the loss of substrate cooperativity. The lack of allosteric inhibition may be related to a new electrostatic interaction made in mutant r chains between the C-terminal carboxylate and a lysine residue of the allosteric domain.  相似文献   

2.
Aspartate carbamoyltransferase (ATCase) is a paradigm for allosteric regulation of enzyme activity. B-class ATCases display very similar homotropic allosteric behaviour, but differ extensively in their heterotropic patterns. The ATCase from the thermoacidophilic archaeon Sulfolobus acidocaldarius, for example, is strongly activated by its metabolic pathway′s end product CTP, in contrast with Escherichia coli ATCase which is inhibited by CTP. To investigate the structural basis of this property, we have solved the crystal structure of the S. acidocaldarius enzyme in complex with CTP. Structure comparison reveals that effector binding does not induce similar large-scale conformational changes as observed for the E. coli ATCase. However, shifts in sedimentation coefficients upon binding of the bi-substrate analogue PALA show the existence of structurally distinct allosteric states. This suggests that the so-called “Nucleotide-Perturbation model” for explaining heterotropic allosteric behaviour, which is based on global conformational strain, is not a general mechanism of B-class ATCases.  相似文献   

3.
The X-ray crystal structures of three forms of the enzyme aspartate aminotransferase (EC 2.6.1.1) from chicken heart mitochondria have been refined by least-squares methods: holoenzyme with the co-factor pyridoxal-5'-phosphate bound at pH 7.5 (1.9 A resolution), holoenzyme with pyridoxal-5'-phosphate bound at pH 5.1 (2.3 A resolution) and holoenzyme with the co-factor pyridoxamine-5'-phosphate bound at pH 7.5 (2.2 A resolution). The crystallographic agreement factors [formula: see text] for the structures are 0.166, 0.130 and 0.131, respectively, for all data in the resolution range from 10.0 A to the limit of diffraction for each structure. The secondary, super-secondary and domain structures of the pyridoxal-phosphate holoenzyme at pH 7.5 are described in detail. The surface area of the interface between the monomer subunits of this dimeric alpha 2 protein is unusually large, indicating a very stable dimer. This is consistent with biochemical data. Both subunit and domain interfaces are relatively smooth compared with other proteins. The interactions of the protein with its co-factor are described and compared among the three structures. Observed changes in co-factor conformation may be related to spectral changes and the energetics of the catalytic reaction. Small but significant adjustments of the protein to changes in co-factor conformation are seen. These adjustments may be accommodated by small rigid-body shifts of secondary structural elements, and by packing defects in the protein core.  相似文献   

4.
A modified form of aspartate transcarbamylase is synthesized by Escherichia coli in the presence of 2-thiouracil which does not exhibit homotropic cooperative interactions between active sites yet retains heterotropic cooperative interactions due to nucleotide binding. The conformational changes induced in the modified enzyme by the binding of different ligands (substrates, substrate analogs, a transition state analog, and nucleotide effectors) were studied using ultraviolet absorbance and circular dichroism difference spectroscopy. Comparison of the results for the modified enzyme and its isolated subunits to those for the native enzyme and its isolated subunits showed that the conformational changes detected by these methods are qualitatively similar in the two enzymes. Comparison of the absorbance difference spectra due to the binding of a transition substrate analog to the intact native or modified enzymes to the corresponding results for the isolated subunits suggested that ligand binding causes an increased exposure to solvent of certain tyrosyl and phenylalanyl residues in the intact enzymes but not in the isolated subunits. This result is consistent with a diminution of subunit contacts due to substrate binding in the course of homotropic interactions in the native enzyme. Such conformational changes, though perhaps necessary for homotropic cooperativity, are not sufficient to cause homotropic cooperativity since the modified enzyme gave identical perturbations. Interactions of the transition state analog, N-(phosphonacetyl)-L-aspartate, with the modified enzyme were studied. Enzyme kinetic data obtained at low aspartate concentrations showed that this transition state analog does not stimulate activity, but rather exhibits the inhibition predicted for the total absence of homotropic cooperative interactions in the modified enzyme. Spectrophotometric titrations of the number of catalytic sites with the transition state analog showed that the modified enzyme and its isolated subunits possess, respectively, four and two high affinity sites for the inhibitor instead of six and three observed in the case of the normal enzyme and its isolated catalytic subunits. These results are correlated with the lower specific enzymatic activities of the modified enzyme and its catalytic subunits compared to the normal corresponding enzymatic species.  相似文献   

5.
Human liver ornithine carbamoyltransferase undergoes absorbance changes in the UV region upon formation of the carbamoylphosphate-norvaline-enzyme ternary complex. The UV changes are similar in the presence of carbamoylphosphate alone, whilst they are lower in the presence of ornithine or norvaline alone. The extent of the UV changes correlates with the enzyme susceptibility to proteolytic degradation. The free native enzyme is completely and rapidly hydrolyzed by trypsin, whilst it is partially protected upon carbamoylphosphate binding. The extent of protection increases for the carbamoylphosphate-norvaline-enzyme ternary complex. These results strongly suggest that the binding of the first substrate, i.e. carbamoylphosphate, to human ornithine carbamoyltransferase induces a large protein isomerization, which regards the polar domain plus a part of equatorial domain of each subunit.  相似文献   

6.
7.
In a previous article, we have identified a lambda bacteriophage directing the synthesis of a modified aspartate carbamoyltransferase lacking substrate-co-operative interactions and insensitive to the feedback inhibitor CTP. These abnormal properties were ascribed to a mutation in the gene pyrI encoding the regulatory polypeptide chain of the enzyme. We now report the sequence of the mutated pyrI and show that, during the generation of this pyrBI-bearing phage, six codons from lambda DNA have been substituted for the eight terminal codons of the wild-type gene. A model is presented for the formation of this modified pyrI gene during the integrative recombination of the parental lambda phage with the Escherichia coli chromosome. An accompanying paper emphasizes the importance of the carboxy-terminal end of the regulatory chain for the homotropic and heterotropic interactions of aspartate carbamoyltransferase.  相似文献   

8.
Treponema denticola seems to play a central role in the etiology of human periodontal disease. We have cloned an antigenic protein-coding sequence from T. denticola ATCC 33520. The protein-coding region was found to be a 3-kbp HindIII-HindIII fragment. The open reading frame consists of 1,426 bp and codes for a protein with an M(r) of 54,919. The deduced amino acid sequence showed 33.8% homology with that of the aspartate carbamoyltransferase of Escherichia coli. The gene products showed aspartate carbamoyltransferase activity.  相似文献   

9.
Atomic coordinates obtained from the crystal structures of unliganded and liganded aspartate carbamoyltransferase at pH 5.8 yield calculated low angle scattering curves in substantial agreement with experimental curves obtained by Moody, Vachette and Foote at pH 8.3. Thus the major conformational changes produced upon binding of six molecules of ligand, N-phosphonacetyl-L-aspartate (PALA) are very similar at pH 8.3 where the enzyme shows activity and regulation, as at pH 5.8 where the enzyme is inactive.  相似文献   

10.
Treponema denticola seems to play a central role in the etiology of human periodontal disease. We have cloned an antigenic protein-coding sequence from T. denticola ATCC 33520. The protein-coding region was found to be a 3-kbp HindIII-HindIII fragment. The open reading frame consists of 1,426 bp and codes for a protein with an M(r) of 54,919. The deduced amino acid sequence showed 33.8% homology with that of the aspartate carbamoyltransferase of Escherichia coli. The gene products showed aspartate carbamoyltransferase activity.  相似文献   

11.
For the first time, the structural change associated with an allosteric transition has been monitored by X-ray solution scattering. The kinetics of the quaternary structure change of aspartate transcarbamylase were first slowed by using acetyl phosphate instead of carbamyl phosphate, and by the presence of 10% or 30% ethylene glycol. At 6.5 degrees C, the quaternary structure change was found to have a time constant of about 11 seconds. This appears to be larger than that obtained for the switching of homotropic co-operativity, measured by chemical quench under the same conditions.  相似文献   

12.
The modified aspartate transcarbamylase (ATCase) encoded by the transducing phage described by Cunin et al. has been purified to homogeneity. In this altered form of enzyme (pAR5-ATCase) the last eight amino acids of the C-terminal end of the regulatory chains are replaced by a sequence of six amino acids coded for by the lambda DNA. This modification has very informative consequences on the allosteric properties of ATCase. pAR5-ATCase lacks the homotropic co-operative interactions between the catalytic sites for aspartate binding and is "frozen" in the R state. In addition, this altered form of enzyme is insensitive to the physiological feedback inhibitor CTP, in spite of the fact that this nucleotide binds normally to the regulatory sites. Conversely, pAR5-ATCase is fully sensitive to the activator ATP. However, this activation is limited to the extent of the previously described "primary effect" as expected from an ATCase form "frozen" in the R state. These results emphasize the importance of the three-dimensional structure of the C-terminal region of the regulatory chains for both homotropic and heterotropic interactions. In addition, they indicate that the primary effects of CTP and ATP involve different features of the regulatory chain-catalytic chain interaction area.  相似文献   

13.
14.
15.
The catabolic ornithine carbamoyltransferase (EC 2.1.3.3) from Pseudomonas aeruginosa, that shows allosteric behaviour, and a mutant version of this enzyme has been crystallized in several different crystal forms. All of these have been characterized by X-ray diffraction methods. A 4.5 A resolution data set has been collected on a triclinic crystal. Analysis of the data using the self-rotation function shows that 12 monomers associate to form a particle with cubic 23 point group symmetry.  相似文献   

16.
The activity of the de novo pyrimidine biosynthetic pathway has been measured in resistant and sensitive murine tumors in vivo following a single intraperitoneal dose of N-phosphonacetyl-L-aspartate (PALA) (400 mg/kg). For these studies, we utilized a gas chromatograph-mass spectrometric technique which enabled measurement of 13C incorporation from 13CO2 into the uracil nucleotide pool (sigma uracil) of tumors in situ. Flux through the de novo pathway was 75-85% inhibited 1 h after PALA treatment in both sensitive (Lewis lung carcinoma) and the resistant (L1210) tumors, but there was a lag time before this inhibition was reflected in reduced sigma uracil pools. The activity of the pathway in the Lewis lung carcinoma tumors remained maximally depressed (5-15% of control activity) for up to 48 h after the dose of PALA. In contrast, flux through the pathway of L1210 tumors remained 80% inhibited for up to 4 h following PALA administration, but recovered to 70% of control activity between 4 and 12 h after PALA treatment. Recovery of the remaining 30% of control activity in the L1210 tumor was at a much slower rate requiring between 12 and 48 h after PALA treatment to regain full activity of the pathway. This recovery of flux through the de novo pyrimidine biosynthetic pathway did not correlate with the measurement of recovery of aspartate transcarbamylase activity in similarly treated tumors. These data argue strongly in favor of the importance of the de novo biosynthetic pathway, rather than salvage mechanisms, for determining in vivo sensitivity or resistance of these tumors to PALA treatment.  相似文献   

17.
The analysis of conformational transitions using limited proteolysis was carried out on a hyperthermophilic aspartate aminotransferase isolated from the archaebacterium Sulfolobus solfataricus, in comparison with pig cytosolic aspartate aminotransferase, a thoroughly studied mesophilic aminotransferase which shares about 15% similarity with the archaebacterial protein. Aspartate aminotransferase from S. solfataricus is cleaved at residue 28 by thermolysin and residues 32 and 33 by trypsin; analogously, pig heart cytosolic aspartate aminotransferase is cleaved at residues 19 and 25 [Iriarte, A., Hubert, E., Kraft, K. & Martinez-Carrion, M. (1984) J. Biol. Chem. 259, 723-728] by trypsin. In the case of aspartate aminotransferase from S. solfataricus, proteolytic cleavages also result in transaminase inactivation thus indicating that both enzymes, although evolutionarily distinct, possess a region involved in catalysis and well exposed to proteases which is similarly positioned in their primary structure. It has been reported that the binding of substrates induces a conformational transition in aspartate aminotransferases and protects the enzymes against proteolysis [Gehring, H. (1985) in Transaminases (Christen, P. & Metzler, D. E., eds) pp. 323-326, John Wiley & Sons, New York]. Aspartate aminotransferase from S. solfataricus is protected against proteolysis by substrates, but only at high temperatures (greater than 60 degrees C). To explain this behaviour, the kinetics of inactivation caused by thermolysin were measured in the temperature range 25-75 degrees C. The Arrhenius plot of the proteolytic kinetic constants measured in the absence of substrates is not rectilinear, while the same plot of the constants measured in the presence of substrates is a straight line. Limited proteolysis experiments suggest that aspartate aminotransferase from S. solfataricus undergoes a conformational transition induced by the binding of substrates. Another conformational transition which depends on temperature and occurs in the absence of substrates could explain the non-linear Arrhenius plot of the proteolytic kinetic constants. The latter conformational transition might also be related to the functioning of the archaebacterial aminotransferase since the Arrhenius plot of kcat is non-linear as well.  相似文献   

18.
19.
Purified aspartate carbamoyltransferase from Escherichia coli K12 (carbamoylphosphate: L-aspartate carbamyltransferase, EC 2.1.3.2) shows greater activity with nucleotide effectors as the magnesium nucleotide complex than with similar amounts of the sodium nucleotide. Regulation of aspartate carbamoyltransferase activity in vivo may occur by changes in the total concentration of regulatory nucleotides or, under conditions of magnesium-limited growth, by variation of the saturation of the nucleotides with magnesium.  相似文献   

20.
X-ray solution scattering has been used for studying the structural changes that take place upon uptake and release of iron from serum and chicken ovo-transferrin and human lactoferrin. In the case of chicken ovo-transferrin, data have been obtained for both the intact protein and the isolated N and C-lobes with and without iron. These studies reveal that both lobes undergo a change that is consistent with an opening of the inter-domain cleft when iron is removed from the protein. We suggest that the conformational change of the protein increases the specificity of receptor binding and that the closed configuration of the iron-loaded protein is one, or perhaps the, decisive step in the mechanism for receptor-mediated endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号