首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By equivalently replacing the dynamical boundary condition by a kind of nonlocal boundary conditions, and noting a hidden regularity of solution on the boundary with a dynamical boundary condition, a constructive method with modular structure is used to get the local exact boundary controllability for 1‐D quasilinear wave equations with dynamical boundary conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
确立平面位势和弹性力学问题的边界元直接法中边界积分的解析计算框架系统,从而避免了传统的高斯近似求积分,数值算例表明它具有较高的精度和效率,特别是在边界量和边界附近区域内点物理量的计算可获得较高的精度。  相似文献   

3.
组合证券投资的有效边界   总被引:15,自引:0,他引:15  
本文讨论了由Markowitz提出的证券组合模型的边界函数性质.并给出了在变量非负条件下边界函数的确定方法。得出了在非负条件下有效边界函数是预期回收值的逐段二次凸函数以及Markoweitz模型的最优解是预期回收值的逐段线性向量函数的结论。  相似文献   

4.
We consider a model homogenization problem for the Poisson equation in a domain with a rapidly oscillating boundary which is a small random perturbation of a fixed hypersurface. A Fourier boundary condition with random coefficients is imposed on the oscillating boundary. We derive the effective boundary condition, prove a convergence result, and establish error estimates.  相似文献   

5.
The analysis of scalar wave propagation in 2D zonewise homogeneous media with vanishing initial and mixed boundary conditions is carried out. The problem is formulated in terms of time‐dependent boundary integral equations, and then it is set in a weak form, based on a natural energy identity satisfied by the differential problem solution. Several numerical results have been obtained by means of the related energetic Galerkin boundary element method showing accuracy and stability of the method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
An equivalence between a class of regular self-adjoint fourth-order boundary value problems with coupled or mixed boundary conditions and a certain class of matrix problems is investigated. Such an equivalence was previously known only in the second-order case and fourth-order case with separated boundary conditions.  相似文献   

7.
In the recent literature, the boundary element method (BEM) is extensively used to solve time-dependent partial differential equations. However, most of these formulations yield algorithms where one has to include all interior points in the computation process if finite difference procedures are used to approximate the temporal derivative. This obviously restricts the advantages of the BEM, which is mainly considered to be a boundary only algorithm for time-independent problems. A new algorithm is demonstrated here, which extends the boundary only nature of the method to time-dependent partial differential equations. Using this procedure, one can reduce the finite difference time integration algorithm, generated in a standard manner, to a boundary only process. The proposed method is demonstrated with considerable success for diffusion problems. Results obtained in these applications are presented comparatively with analytical and other boundary element time integration procedures. The algorithm proposed may utilize several coordinate functions in the secondary reduction phase of the formulation. A summary of such functions is described here and performances of these functions are tested and compared in three applications. It is shown that some coordinate functions perform better than others under certain conditions. Using these results, we propose a general coordinate function, which may be used with satisfactory results in all parabolic partial differential equation applications.  相似文献   

8.
This paper investigates the analytical approximate solutions of third order three-point boundary value problems using reproducing kernel method. The solution obtained by using the method takes the form of a convergent series with easily computable components. However, the reproducing kernel method can not be used directly to solve third order three-point boundary value problems, since there is no method of obtaining reproducing kernel satisfying three-point boundary conditions. This paper presents a method for solving reproducing kernel satisfying three-point boundary conditions so that reproducing kernel method can be used to solve third order three-point boundary value problems. Results of numerical examples demonstrate that the method is quite accurate and efficient for singular second order three-point boundary value problems.  相似文献   

9.
In this paper, the problem of solving the two-dimensional diffusion equation subject to a non-local condition involving a double integral in a rectangular region is considered. The solution of this type of problems are complicated. Therefore, a simple meshless method using the radial basis functions is constructed for the non-local boundary value problem with Neumann’s boundary conditions. Numerical examples are included to demonstrate the reliability and efficiency of this method. Also Ne and root mean square errors are obtained to show the convergence of the method.  相似文献   

10.
On open surfaces, the energy space of hypersingular operators is a fractional order Sobolev space of order 1/2 with homogeneous Dirichlet boundary condition (along the boundary curve of the surface) in a weak sense. We introduce a boundary element Galerkin method where this boundary condition is incorporated via the use of a Lagrangian multiplier. We prove the quasi‐optimal convergence of this method (it is slightly inferior to the standard conforming method) and underline the theory by a numerical experiment. The approach presented in this article is not meant to be a competitive alternative to the conforming method but rather the basis for nonconforming techniques like the mortar method, to be developed. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

11.
用双层位势表示的二维Neumann边值问题的边界归化方法,将原始问题归化为新型边界积分-微分方程,由此导出一种新的既能保持原始问题的自伴性,又具有可积弱奇性积分核的边界变分方程.本文将此法推广到三维Helmholtz方程Neumann边值问题,并给出最优能量模误差估计和内部最大模超收敛估计.  相似文献   

12.
This paper is devoted to initial boundary value problems for quasi-linear symmetric hyperbolic systems in a domain with characteristic boundary. It extends the theory on linear symmetric hyperbolic systems established by Friedrichs to the nonlinear case. The concept on regular characteristics and dissipative boundary conditions are given for quasilinear hyperbolic systems. Under some assumptions, an existence theorem for such initial boundary value problems is obtained. The theorem can also be applied to the Euler system of compressible flow. __________ Translated from Chinese Annals of Mathematics, Ser. A, 1982, 3(2): 223–232  相似文献   

13.
We propose a new numerical method for the solution of the Bernoulli free boundary value problem for harmonic functions in a doubly connected domain D in where an unknown free boundary Γ0 is determined by prescribed Cauchy data on Γ0 in addition to a Dirichlet condition on the known boundary Γ1. Our main idea is to involve the conformal mapping method as proposed and analyzed by Akduman, Haddar, and Kress for the solution of a related inverse boundary value problem. For this, we interpret the free boundary Γ0 as the unknown boundary in the inverse problem to construct Γ0 from the Dirichlet condition on Γ0 and Cauchy data on the known boundary Γ1. Our method for the Bernoulli problem iterates on the missing normal derivative on Γ1 by alternating between the application of the conformal mapping method for the inverse problem and solving a mixed Dirichlet–Neumann boundary value problem in D. We present the mathematical foundations of our algorithm and prove a convergence result. Some numerical examples will serve as proof of concept of our approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The singular boundary method (SBM) is a recent strong‐form boundary collocation method free of integration, mesh, and fictitious boundary. Although an extensive study has been reported in the literature on improving its accuracy and stability as well as its applications to diverse problems, little, however, has been done to analyze its convergence mathematically. The main purpose of this paper is to derive the explicit error bounds of the SBM for potential problems as well as to explain the essential difference between the origin intensity factor (OIF) in the SBM and the singular integration in the boundary element method (BEM). In the process of derivation, we also illustrate the physical meaning of OIF and explain the reason why the OIF has the function to correct the discretization error on the boundary. Finally, several benchmark examples are given to verify the effectiveness of the conclusions obtained from this article, as well as to investigate the different convergence behaviors between the SBM and BEM. It can be found that the SBM has the explicit error bound and is mathematically a stable technique.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1987–2004, 2017  相似文献   

15.
Various techniques may be applied to the approximation of the unknown boundary functions involved in the boundary element method (BEM). Several techniques have been examined numerically to find the most efficient. Techniques considered were: Lagrangian polynomials of the zeroth, first and second orders; spline functions; and the novel weighted minimization technique used successfully in the finite difference method (FDM) for arbitrarily irregular meshes. All these approaches have been used in the BEM for the numerical analysis of plates with various boundary conditions.Both coarse and fine grids on the boundary have been assumed. Maximal errors of the deflections of each plate and the bending moments have been found and the effective computer CPU times determined.Analysis of the results showed that, for the same computer time, the greatest accuracy was obtained by the weighted FDM approach. In the case of the Lagrange approximation, higher order polynomials have proved more efficient. The spline technique yielded more accurate results, but with a higher CPU time.Two discretization approaches have been investigated: the least-squares technique and the collocation method. Despite the fact that the simultaneous algebraic equations obtained were not symmetric, the collocation approach has been confirmed as clearly superior to the least-squares technique, because of the amount of computation time used.  相似文献   

16.
We consider the problem of a polygonal plate with free edges. It is a boundary value problem for the biharmonic operator on a polygon with Neumann boundary conditions. Its resolution is studied via boundary integral equations. A variational formulation of the boundary problem obtained by a double-layer potential is given. Finally, we implement the method and give numerical results. © 1998 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

17.
This paper is concerned with a class of fourth-order nonlinear elliptic equations with nonlocal boundary conditions, including a multi-point boundary condition in a bounded domain of Rn. Also considered is a second-order elliptic equation with nonlocal boundary condition, and the usual multi-point boundary problem in ordinary differential equations. The aim of the paper is to show the existence of maximal and minimal solutions, the uniqueness of a positive solution, and the method of construction for these solutions. Our approach to the above problems is by the method of upper and lower solutions and its associated monotone iterations. The monotone iterative schemes can be developed into computational algorithms for numerical solutions of the problem by either the finite difference method or the finite element method.  相似文献   

18.
It is proved that a previously proposed method for transferring boundary conditions as applied to a boundary value problem for a linear system of ordinary differential equations gives numerically stable results if this problem is stable with respect to small variations in the input data.  相似文献   

19.
Homogenized coefficients of periodic structures are calculated via an auxiliary partial differential equation in the periodic cell. Typically, a volume finite element discretization is employed for the numerical solution. In this paper, we reformulate the problem as a boundary integral equation using Steklov–Poincaré operators. The resulting boundary element method only discretizes the boundary of the periodic cell and the interface between the materials within the cell. We prove that the homogenized coefficients converge super-linearly with the mesh size, and we support the theory with examples in two and three dimensions.  相似文献   

20.
In this article, we analyze the singular function boundary integral method (SFBIM) for a two‐dimensional biharmonic problem with one boundary singularity, as a model for the Newtonian stick‐slip flow problem. In the SFBIM, the leading terms of the local asymptotic solution expansion near the singular point are used to approximate the solution, and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multiplier functions. By means of Green's theorem, the resulting discretized equations are posed and solved on the boundary of the domain, away from the point where the singularity arises. We analyze the convergence of the method and prove that the coefficients in the local asymptotic expansion, also referred to as stress intensity factors, are approximated at an exponential rate as the number of the employed expansion terms is increased. Our theoretical results are illustrated through a numerical experiment. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号