首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural, superconducting and magnetic properties of La2Cu1−xZnxO4+δ (0≤x≤0.1) chemically oxidized by NaClO at room temperature were studied. All the samples before and after oxidation are single phase with orthorhombic structure, as indicated by their powder X-ray diffraction analysis. The iodometric titration results indicate that Zn-substituted La2Cu1−xZnxO4 is more favorable for the insertion of the excess oxygen, as compared to the Zn-free La2CuO4. The Tc suppression rate resulting from Zn substitution in La2Cu1−xZnxO4+δ is −12.4 K/%. The effective magnetic moment induced by the non-magnetic Zn ion is the order of one Bohr magneton, which decreases with increasing the Zn concentrations in the range examined. The latter two results are qualitatively well consistent with those obtained in La2−xSrxCu1−yZnyO4 with the Sr optimal doping. This reveals that the non-magnetic Zn ions play the same role in both of the La2Cu1−xZnxO4+δ with the excess oxygen content of about 0.1 and the La2−xSrxCu1−yZnyO4 with the Sr optimal doping.  相似文献   

2.
The roles of aliovalent CaII-for-YIII substitution and high-pressure-oxygen annealing in the process of ‘superconducterizing’ the Co-based layered copper oxide, CoSr2(Y1−xCax)Cu2O7+δ (Co-1212), were investigated. The as-air-synthesized samples up to x=0.4 were found essentially oxygen stoichiometric (−0.03≤δ≤0.00). These samples, however, were not superconducting, suggesting that the holes created by the divalent-for-trivalent cation substitution are trapped on Co in the charge reservoir. Ultra-high-pressure heat treatment carried out at 5 GPa and 500 °C for 30 min in the presence of Ag2O2 as an excess oxygen source induced bulk superconductivity in these samples. The highest Tc was obtained for the high-oxygen-pressure treated x=0.3 sample at ∼40 K.  相似文献   

3.
The magnetic properties of Y2Fe17−xGax for 3≤x≤7 and Gd2Fe17−xGax for 5≤x≤7 have been investigated using 57Fe Mössbauer spectroscopy. These compounds have the rhombohedral Th2Zn17 structure. X-ray diffraction analysis of aligned powders shows that the easy direction of magnetization is parallel to the c-axis in Y2Fe10Ga7 and Gd2Fe10Ga7 and is perpendicular to the c-axis in Y2Fe14Ga3, Y2Fe12Ga5, Gd2Fe12Ga5 and Gd2Fe11Ga6. Mössbauer studies indicate that those samples are ordered ferromagnetically. The 57Fe hyperfine field decreases with increasing Ga content. This decrease results from the decreased magnetic exchange interactions resulting from Ga substitution. The average isomer shift, δ, for R2Fe17−xGax (R=Y and Gd) at room temperature is positive and the magnitude of δ increases with increasing Ga content.  相似文献   

4.
Polycrystalline Zn0.6Cu0.4Fe2O4 ferrites have been prepared using a solid-state reaction technique. Their structural and magnetic properties have been studied, using X-ray diffraction and Mössbauer and magnetic measurements. These results have been compared to a more general theoretical study, on ZnxCu1−xFe2O4, based on mean field theory and high-temperature series expansions (HTSE), and extrapolated with the Padé approximant method. The nearest neighbour super-exchange interactions for the intra-site and the inter-site of ZnxCu1−xFe2O4 spinel ferrites, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The Curie temperature TC is calculated as a function of Zn concentration. The theoretical results obtained are in good agreement with the experimental results obtained by magnetic measurements.  相似文献   

5.
The effects of oxygen doping on the hole-carrying CuO2-layers in Tl2(Ba1−xSrx)2Ca2Cu3Oy were studied by combined chemical and valence analysis, Tc measurements and neutron diffraction. The highest Tc is characterized by an optimal excess oxygen content, Δy, dichotomizing the under- and over-doped regions for each Sr concentration. While the average Tl valence is close to 3.0 and independent of Δy, the average Cu valence shows a linear dependence with Δy. An increase of the flatness of the CuO2 plane, characterized by the O(2)-Cu(2)-O(2) bond angle of ∼176°, was observed at the optimal Δy.  相似文献   

6.
XRD and residual surface stress (sin2 ψ) measurements were carried out on YBa2Cu3Ox superconductors with varying oxygen stoichiometry (6.3 < x < 7.0). Slopes of the surface strain versus sin2 ψ were plotted against oxygen content for certain reflections. Compressional surface stress has been found along the c-axis, while a tensile surface stress has been observed along the ab-plane. Both surface stresses were found to vary slightly with oxygen content. These findings qualitatively agree with a very small hydrostatic pressure effect on Tc for fully oxygenated YBa2Cu3Ox (x = 7) compared to oxygen deficient material at the surface.  相似文献   

7.
The substituted nickel ferrite (NiFe2−2xSnxCuxO4, x=0, 0.1, 0.2, 0.3) was prepared by the conventional ceramic method. The effect of substitution of Fe3+ ions by Sn4+ and Cu2+ cations on the structural and magnetic properties of the ferrite was studied by means of 57Fe Mössbauer spectroscopy, alternating gradient force magnetometry (AGFM) and Faraday balance. Whereas undoped NiFe2O4 adopts a fully inverse spinel structure of the type (Fe)[NiFe]O4, Sn4+ and Cu2+ cations tend to occupy octahedral positions in the structure of the substituted ferrite. Based on the results of Mössbauer spectroscopic measurements, the crystal-chemical formula of the substituted ferrite may be written as (Fe)[NiFe1−2xSnxCux]O4, where parentheses and square brackets enclose cations in tetrahedral (A) and octahedral [B] coordination, respectively. The Néel temperature and the saturation magnetization values of the NiFe2−2xSnxCuxO4 samples were found to decrease with increasing degree of substitution (x). The variation of the saturation magnetization with x measured using the AGFM method and that calculated on the basis of the Mössbauer spectroscopic measurements are in qualitative agreement.  相似文献   

8.
Both oxygen and calcium play important roles in inducing superconductivity in Y Ba2Cu3Oy (YBCO), which is an antiferromagnetic insulator at low O and Ca content. O induces superconductivity in Ca-free YBCO, while Ca does similarly in oxygen-deficient YBCO. For doping oxygen HgO was used as it decomposes at 476 °C into Hg, which escapes from the matrix leaving the crystal unaltered, and O, which provide a way to dope O in YBCO. Considering these facts, polycrystalline samples of Y 1−xCaxBa2Cu3Oy with x=0, 0.1 and 0.2 with and without HgO addition were prepared through a solid-state reaction method. The samples were sintered at 950 °C in open atmosphere. These synthesized samples were characterized through using the X-ray diffraction technique (XRD) for phase evaluation, scanning electron microscopy (SEM) for grain morphology, energy dispersive X-ray analysis (EDX) for compositional analysis and the four-contact measurement technique for determining the superconducting transition temperature.  相似文献   

9.
We have synthesized underdoped NdBa2Cu3O7−y (NBCO) and NdBa2Cu3−xMnxO7−y (x = 0.1, 0.2, and 0.3) samples. The analysis of the lattice parameters has been done by using the X-ray diffraction (XRD) method. Using the Scanning Electron Microscope (SEM) the granular nature as well as the intergranular networks has been studied. The Energy Dispersive X-ray (EDX) and Rutherford Backscattering Spectroscopy (RBS) studies confirm the substitution of Mn in the Cu-sites. The transport measurements in several undoped and Mn-substituted NBCO samples have been carried out. We have observed an indication of the metal to insulator transition as a result of the strong charge localization induced by Mn substitution. The applicability of various conductivity equations has been verified for comparison. Estimations of the activation energy and localization length have been carried out and discussed.  相似文献   

10.
The Bi2(FexGa1−x)4O9 oxide solid solution possessing a mullite-type structure has been investigated by 57Fe Mössbauer spectroscopy in dependence of composition (0.1≤x≤1) and temperature (293≤T/K≤1073). The spectra have been fitted with two doublets for tetrahedrally and octahedrally coordinated high-spin Fe3+ ions, respectively. The experimental areas of the subspectra were used to determine the distribution of iron on the two inequivalent structural sites. The fraction of iron cations occupying the octahedral site is found to increase with decreasing Fe content and the cation distribution is almost independent of temperature. The unusual temperature dependence of the quadrupolar splitting, QS, observed for the octahedral site with dQS/dT>0 is discussed in connexion with structural data for Bi2Fe4O9. The temperature dependence of Mössbauer isomer shifts and signal intensities is examined in the context of local vibrational properties of iron on the two inequivalent sites of the mullite-type lattice structure.  相似文献   

11.
Polycrystalline Mg0.6Cu0.4Fe2O4 ferrites have been prepared using solid-state reaction technique. Their structural and magnetic properties have been studied, using X-ray diffraction and magnetic measurements.Using mean field theory and high-temperature series expansions (HTSE), extrapolated with the padé approximants method, the magnetic properties of Mg1−xCuxFe2O4 have been studied. The nearest neighbor super-exchange interactions for intra-site and inter-site of the Mg1−xCuxFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The Curie temperature Tc is calculated as a function of Mg concentration. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements.  相似文献   

12.
(Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 (M=Co, Ni and Zn) have been synthesized and investigated by means of X-ray diffraction, scanning electron microscope, electrical resistivity and magnetic susceptibility measurements. X-ray diffraction patterns show that all studied samples contain the nearly single ‘1212’ phase. They crystallize in a tetragonal unit cell with a=3.8028-3.8040 Å and c=12.0748-12.1558 Å. In (Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 system (M=Co or Ni), the superconducting critical temperature Tc decreases linearly with both Co and Ni concentrations and the rate of Tc decrease is around −6.5 and −7.0 K/at%, respectively. For (Tl0.5Pb0.5)Sr2Ca (Cu2−xZnx)O7 system, the dependence of Tc on the Zn dopant concentration deviates from a linear behavior and the Zn substitution suppresses Tc much less (−2.5 K/at%) than the Co and Ni substitutions. The suppression in Tc in Co and Ni doped samples are attributed to the magnetic pair-breaking mechanism and the reduction in the carrier concentration. The suppression of Tc in Zn doped samples is not caused by the reduction in carrier concentration which should remain constant, but rather due to nonmagnetic pair-breaking mechanism induced by disorder as well as the filling of the local Cu dx2y2 state due to the full d band of Zn ions.  相似文献   

13.
A series of polycrystalline samples of Mg1−xPbxB2 (0≤x≤0.10) were prepared by a solid state reaction method and their structure, superconducting transition temperature and transport properties were investigated by means of X-ray diffraction (XRD) and resistivity measurements. Mg1−xPbxB2 compounds were shown to adopt an isostructural AlB2-type hexagonal structure in a relatively small range of lead concentration, x≤0.01. The crystalline lattice constants were evaluated and were found to exhibit slight length compression as x increases. The superconducting transition temperature (Tc) steadily decreases with Pb doping. It is suggested that the mechanism of superconductivity reduction by lead doping can be attributed to the chemical pressure effect.  相似文献   

14.
Arrays of Fe0.92−xCoxP0.08 (0.22≤x≤0.78) ternary alloy nanowires were fabricated in anodic aluminium oxide templates by electrochemical deposition. The broadened peaks in transmission Mössbauer spectra and the halo in selected area electron diffraction patterns indicate that the structure of Fe0.92−xCoxP0.08 nanowires is amorphous. However, the short-range order of Fe0.92−xCoxP0.08 nanowires has a bcc structure with a [110]-preferred orientation that is parallel to the nanowires. The magnetic texture results in the magnetic moment direction of the Fe atoms being along the nanowires. The short-range order around the Fe atoms reaches a minimum at x=0.45. With increasing Co content, the average hyperfine field decreases, while the isomer shift and quadrupole splitting remain almost constant, which result from the variation of 3d and 4s electron volume density at the Fe sites.  相似文献   

15.
Biaxially textured YBa2Cu3O7−x (YBCO) films were grown on non-textured metal substrates with inclined-substrate-deposited (ISD) MgO as template. The biaxial texture feature of the films was examined by X-ray pole-figure analysis, φ-scan, and 2θ-scan. A tilt angle of 32° of the MgO[001] with respect to the substrate normal was observed. Epitaxial growth of YBCO films with c-axis tilt angle of 32° with respect to the substrate normal was obtained on these substrates with SrTiO3(STO) as buffer layer. Whereas, by choosing yttria-stabilized ZrO2 and CeO2 instead of STO as buffer layer, a c-axis untilted YBCO film was obtained. Higher values of Tc=91 K and Jc=5.5×105 A/cm2 were obtained on the c-axis untilted YBCO films with 0.46 μm thickness at 77 K in zero field. Comparative studies revealed a unique role of CeO2 in controlling the orientation of the YBCO films grown on ISD-MgO buffered metal substrates.  相似文献   

16.
The doping dependence of the Raman spectra of high quality La2−xSrxCu16,18O4 polycrystalline compounds has been investigated at low temperatures. It is shown that symmetry forbidden bands peaked at ∼150 cm−1, ∼280 cm−1, and ∼370 cm−1 are activated in the (xx/yy) polarization Raman spectra due to the local breaking of the inversion symmetry mainly at low temperatures and for doping concentrations for which the compound is superconducting. The apparent A1-character of the activated modes in the symmetry reduced phase indicates a reduction from the D2h to C2v or D2 crystal symmetries, which associates the observed modes to specific IR-active phonons with eigenvectors mainly along the c-axis. The temperature and doping dependence of this inversion symmetry breaking and the superconducting transition temperature are very similar, though the symmetry reduction occurs at significantly higher temperatures.  相似文献   

17.
18.
We report the results of our investigation in CeNi2−xCuxSn2 (x=0, 0.4, 1.0, 1.6 and 2.0), a new pseudoternary series with CaBe2Ge2-type tetragonal structure. Substitution of Cu for Ni leads to a linear increase in the constants a, c and the unit cell volume v. As probed by the low temperature dependence of ac susceptibility χac(T), the Tf temperature, which corresponds to the freezing temperature of the spin-glass clusters, is annihilated above 2.0 K significantly for the samples with x≥1.6. This observation proves conclusively that the Ni-rich samples in the series CeNi2−xCuxSn2 have the advantage of forming the spin-glass-like state.  相似文献   

19.
The xZnO-(1−x)α-Fe2O3 nanoparticles system has been obtained by mechanochemical activation for x=0.1, 0.3 and 0.5 and for ball milling times ranging from 2 to 24 h. Structural and morphological characteristics of the zinc-doped hematite system were investigated by X-ray diffraction (XRD) and Mössbauer spectroscopy. The Rietveld structure of the XRD spectra yielded the dependence of the particle size and lattice constant on the amount x of Zn substitutions and as function of the ball milling time. The x=0.1 XRD spectra are consistent with line broadening as Zn substitutes Fe in the hematite structure and the appearance of the zinc ferrite phase at milling times longer than 4 h. Similar results were obtained for x=0.3, while for x=0.5 the zinc ferrite phase occurred at 2 h and entirely dominated the spectrum at 24 h milling time. The Mössbauer spectra corresponding to x=0.1 exhibit line broadening as the ball milling time increases, in agreement with the model of local atomic environment. Because of this reason, the Mössbauer spectrum for 12 h of milling had to be fitted with two sextets. For x=0.3 and 12 milling hours, the Mössbauer spectrum reveals the occurrence of a quadrupole-split doublet, with the hyperfine parameters characteristic to zinc ferrite, ZnFe2O4. This doublet clearly dominates the Mössbauer spectrum for x=0.5 and 24 h of milling, demonstrating that the entire system of nanoparticles consists finally of zinc ferrite. As ZnO is not soluble in hematite in the bulk form, the present study clearly demonstrates that the solubility limits of an immiscible system can be extended beyond the limits in the solid state by mechanochemical activation. Moreover, this synthesis route allowed us to reach nanometric particle dimensions, which would make the materials very important for gas sensing applications.  相似文献   

20.
Using mean field theory and high-temperature series expansions (HTSEs), extrapolated with the Padé approximants method, the effect of Zn doping on magnetic properties of NiFe2O4 ferrite spinel has been studied. The nearest neighbour super-exchange interactions for intra-site (JAA, JBB) and inter-site (JAB) of the ZnxNi1−xFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The paramagnetic Curie-Weiss temperature θ and the Curie temperature TC are calculated as a function of Zn concentration. The critical exponent γ associated with magnetic susceptibility is calculated. The spin correlation functions intra-plane and inter-plane have been also computed and compared with exchange couplings. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements and Mössbauer spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号