首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanowall shaped Bi2S3 films were prepared by chemical bath deposition in which ammonium citrate and thioacetamide were used as chelating reagent and sulfur source, respectively. The nanowall Bi2S3 films show large-surface-area nanowall shaped morphology. It is found that the pH value (pH = 6 or pH = 6.5) of the solution is a crucial parameter to obtain the nanowall shaped Bi2S3 films. The composition of the nanowall Bi2S3 films is close to the stoichiometric ratio of Bi2S3. The absorption edge of the nanowall shaped Bi2S3 films is located at around 900 nm, indicating that the optical bandgap of the Bi2S3 films is around 1.4 eV. The nanowall Bi2S3 films show obvious photo-sensitivity. The photo-to-dark conductivity ratios of the nanowall Bi2S3 films prepared at pH = 6 and pH = 6.5 are all around 50. This value is around five times than that of the non-nanowall shaped Bi2S3 films which is prepared at pH = 7.  相似文献   

2.
Two different semiconducting bismuth sulfide (Bi2S3) nanostructures (feather-like Bi2S3 nanotubes and fiber-like Bi2S3 nanotubes) with diameters around 50-60 nm and lengths about tens of micrometers were prepared successfully by a chemical lithography route. The results indicated that the employment of polyvinylpyrrolidone led to the precursor with feather-like morphology and the acid had ripening effect on and etching action to the ultimate formation of the fiber-like Bi2S3 nanotubes. The photoluminescence spectra of two different Bi2S3 nanostructures revealed that the relative position of emission peaks was influenced by the thin edges of the feather-like nanotubes due to the quantum-confinement effect.  相似文献   

3.
Luminescence of the Bi3+ single and dimer centers in UV and visible ranges is studied in YAG:Bi (0.13 and 0.27 at% of Bi, respectively) single crystalline films (SCFs), grown by liquid phase epitaxy from a Bi2O3 flux. The cathodoluminescence spectra, photoluminescence decays, and time-resolved spectra are measured under the excitation by accelerated electrons and synchrotron radiation with energies of 3.7 and 12 eV, respectively. The energy level structure of the Bi3+ single and dimer centers was determined. The UV luminescence of YAG:Bi SCF in the bands that peaked at 4.045 and 3.995 eV at 300 K is caused by radiative transitions of Bi3+ single and dimer centers, respectively. The excitation spectra of UV luminescence of Bi3+ single and dimer centers consist of two dominant bands, peaked at 4.7/4.315 and 5.7/6.15 eV, related to the 1S03P1 (A band) and 1S01P1 (C-band) transitions of Bi3+ ions, respectively. The excitation bands that peaked at 7.0 and 7.09 eV are ascribed to excitons bound with the Bi3+ single and dimer centers, respectively. The visible luminescence of YAG:Bi SCF presents superposition of several wide emission bands peaking within the 3.125-2.57 eV range and is ascribed to different types of excitons localized around the Bi3+ single and dimer centers. Apart from the above mentioned A and C bands the excitation spectra of visible luminescence contain wide bands at 5.25, 5.93, and 6.85 eV ascribed to the O2−→Bi3+ and Bi3+→Bi4+ + e charge transfer transition (CTT) in Bi3+ single and dimer centers. The observed significant differences in the decay kinetics of visible luminescence under excitation in A and C bands of Bi3+ ions, CTT bands, and in the exciton and interband transitions confirm the radiative decay of different types of excitons localized around Bi3+ ions in the single and dimer centers.  相似文献   

4.
Bismuth sulfide (Bi2S3) films were chemically deposited by a novel deposition system in which ammonium citrate was used as the chelating reagent. Two sulfur source thioacetamide (TA) and sodium thiosulfate (Na2S2O3) were used to prepare Bi2S3 films. Both the as-prepared films have amorphous structure. However, annealing can improve the crystallization of the films. The composition of the films prepared by TA and Na2S2O3 are all deviate from the stoichiometric ratio of Bi2S3. The Bi2S3 films are all homogeneous and well adhered to the substrate. The optical properties of the Bi2S3 films are studied. The electrical resistivity of the as-prepared films are all around 7 × 103 Ω cm in dark, which decreases to around 1 × 10Ω cm under 100 mW/cm2 tungsten-halogen illumination. After the annealing, the dark resistivity of the Bi2S3 film prepared by TA decreases by four magnitudes. In contrast, the dark resistivity of the Bi2S3 film prepared by Na2S2O3 only decreases slightly.  相似文献   

5.
Nanoleaf-like Bi2S3 thin films were deposited on indium tin oxide (ITO) glass using Bi(NO3)3 and Na2S2O3 as precursors by a cathodic electrodeposition process. The as-deposited thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and photoluminescence spectrum (PL). The influence of precursor solution mole concentration ratios [Bi(NO3)3]/[Na2S2O3] on the phase compositions, morphologies and photoluminescence properties of the obtained thin films were investigated. Results show that a uniform Bi2S3 thin film with nanoleaf structure can be obtained with the precursor solution concentration ratio [Bi(NO3)3]/[Na2S2O3] = 1:7. The as-prepared thin films exhibit blue-green photoluminescence properties under ultraviolet light excitation. With the increase of concentration ratios [Bi(NO3)3]/[Na2S2O3] in the deposition solution, the crystallizations and PL properties of Bi2S3 thin films are obviously improved.  相似文献   

6.
Highly oriented silicon nanowire (SiNW) layer was fabricated by etching Si substrate in HF/(AgNO3 + Na2S2O8) solution at 50 °C. The morphology and the photoluminescence (PL) of the etched layer as a function of Na2S2O8 concentration were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). It was demonstrated that the morphology of the etched layers depends on the Na2S2O8 concentration. Room-temperature photoluminescence (PL) from etched layer was observed. It was found that the utilisation of Na2S2O8 decreases PL peak intensity. Finally, a discussion on the formation process of the silicon nanowires is presented.  相似文献   

7.
Results of magnetic measurements suggested that Bi2S3 and ZnS nanocrystalline powders prepared by hydrothermal method could possibly exhibit room temperature ferromagnetism. The measured saturation magnetization of the powders increases with an increase of annealing temperature from 300 to 500 °C. Ab initio calculations suggested that the cation vacancies on the surface of Bi2S3 and ZnS nanograins could be responsible for the observed magnetic moments. Heat-treatment of Bi2S3 or ZnS nanocrystalline powders in Bi or Zn vapor could bring about an enhancement of ferromagnetism. The calculation results indicated that the interstitial Bi or Zn atoms in Bi2S3 (0 0 1) or ZnS (0 0 1) surface could induce magnetic moments.  相似文献   

8.
Stearic acid coated Bi2O3 nanoparticles in the size range of 5-13 nm were synthesized by the microemulsion method. HRTEM showed that the morphology of Bi2O3 nanoparticles was ellipsoidal. The absorption edge of Bi2O3 nanoparticles showed a blue shift of ∼0.45 eV, comparing with that of the bulk Bi2O3. At room temperature, Bi2O3 nanoparticles also showed a strong luminescence at 397 and 420 nm, depending on the excitation wavelength.  相似文献   

9.
SnO2 nanowires with controlled diameters were grown by chemical vapor deposition process for which four different diameters ranging from 50 to 140 nm were grown by the controlling thickness of gold-thin-films as catalysts. The influence of the diameter-to-thickness ratio as well as the mechanism of its formation was studied. The relationship between photoluminescence intensities and aspect ratio with considering surface effects of SnO2 nanowires was also investigated. The room temperature luminescence intensity was diminished with decreasing the diameter of nanowires due to the increasing surface/volume ratio. The transition energy and emission intensity show abnormal behavior as temperature decreased from room temperature to 5 K.  相似文献   

10.
The electronic structure and chemical bonding in HgGa2S4 crystals grown by vapor transport method are investigated with X-ray photoemission spectroscopy. The valence band of HgGa2S4 is found to be formed by splitted S 3p and Hg 6s states at binding energies BE=3-7 eV and the components at BE=7-11 eV generated by the hybridization of S 3s and Ga 4s states with a strong contribution from the Hg 5d states. At higher binding energies the emission lines related to the Hg 4f, Ga 3p, S 2p, S 2s, Hg 4d, Ga LMM, Ga 3p and S LMM states are analyzed in the photoemission spectrum. The measured core level binding energies are compared with those of HgS, GaS, AgGaS2 and SrGa2S4 compounds. The valence band spectrum proves to be independent on the technological conditions of crystal growth. In contrast to the valence band spectrum, the distribution of electron states in the bandgap of HgGa2S4 crystals is found to be strongly dependent upon the technological conditions of crystal growth as demonstrated by the photoluminescence analysis.  相似文献   

11.
Bismuth sulfide (Bi2S3) and antimony sulfide (Sb2S3) nanorods were synthesized by hydrothermal method. The products were characterized by UV-vis spectrophotometer, X-ray powder diffraction (XRD) and transmission electron microscope (TEM). Bi2S3 and Sb2S3 nanorods were measured by Z-scan technique to investigate the third-order nonlinear optical (NLO) properties. The result of NLO measurements shows that the Bi2S3 and Sb2S3 nanorods have the behaviors of the third-order NLO properties of both NLO absorption and NLO refraction with self-focusing effects. The third-order NLO coefficient χ(3) of the Bi2S3 and Sb2S3 nanorods are 6.25×10−11 esu and 4.55×10−11 esu, respectively. The Sb2S3 and Bi2S3 nanorods with large third-order NLO coefficient are promising materials for applications in optical devices.  相似文献   

12.
Nanostructured Bi2S3 was hydrothermally produced from Bi2O3 and thiocarbohydrazide in acidic solutions containing PVA, PEG and PVP. By using XRD, SAED and Raman spectrometry, the products were orthorhombic Bi2S3, with four vibration modes at 139.6, 253.7, 310 and 968.9 cm−1. The phase was also in accordance with the diffraction patterns obtained by simulation. SEM, TEM and HRTEM show that the products are clusters of nanorods produced in polymer-free solution, and nanostructured flowers of nanospears, nanorods and nanoplates in the respective PVA-, PEG- and PVP-added solutions, with their growths in the same direction of [0 0 1]. A formation mechanism was also proposed according to their phase and morphologies.  相似文献   

13.
(C9H19NH3)2PbI2Br2 compound is a new crystal belonging to the large hybrid organic-inorganic perovskites compounds family. Optical properties are investigated by optical absorption UV-visible and photoluminescence (PL) techniques. Bands to band absorption peak at 2.44 eV as well as an extremely strong yellow-green photoluminescence emission at 2.17 eV is observed at room temperature. First principle calculations based on the DFT and FLAPW methods combined with LDA approximation are performed as well. Density of state close to the gap is presented and discussed in terms of optical absorption and photoluminescence experimental results. The perfect agreement between experimental data and electronic structure calculations is highlighted.  相似文献   

14.
In-doped Ga2O3 zigzag-shaped nanowires and undoped Ga2O3 nanowires have been synthesized on Si substrate by thermal evaporation of mixed powders of Ga, In2O3 and graphite at 1000 °C without using any catalyst via a vapor-solid growth mechanism. The morphologies and microstructures of the products were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence spectroscopy (PL). The nanowires range from 100 nm to several hundreds of nanometers in diameter and several tens of micrometers in length. A broad emission band from 400 to 700 nm is obtained in the PL spectrum of these nanowires at room temperature. There are two blue-emission peaks centering at 450 and 500 nm, which originate from the oxygen vacancies, gallium vacancies and gallium-oxygen vacancy pairs.  相似文献   

15.
A novel green phosphor, Tb3+ doped Bi2ZnB2O7 was synthesized by conventional solid state reaction method. The phase of synthesized materials was determined using the XRD, DTA/TG and FTIR. The photoluminescence characteristics were investigated using spectrofluorometer at room temperature. Bi2ZnB2O7:Tb3+ phosphors excited by 270 nm and 485 nm wavelengths. The emission spectra were composed of three bands, in which the dominated emission of green luminescence Bi2ZnB2O7:Tb3+ attributed to the transition 5D4 → 7F5 is centered at 546 nm. The dependence of the emission intensity on the Tb3+ concentration for the Bi2−xTbxZnB2O7 (0.01 ≤ x ≤ 0.15) was studied and observed that the optimum concentration of Tb3+ in phosphor was 13 mol% for the highest emission intensity at 546 nm.  相似文献   

16.
An acidification-hydrothermal method was developed to synthesize α-MnO2 nanowires, which was subsequently treated with ethanol, resulting in γ-Mn2O3 nanowire bundles on a large scale. The electrochemical characterization was carried out by cyclic voltammetry, which indicated that the α-MnO2 nanowires in 0.5 mol L−1 Na2SO4 aqueous electrolyte was of an excellent electrode material for supercapacitor at the scan rate of 10 mV S−1 in the range of 0.0-0.85 V.  相似文献   

17.
Orthorhombic Bi2S3 with different morphologies was successfully synthesized by the acid-catalyst hydrothermal reactions of bismuth nitrate (Bi(NO3)3) and thiourea (NH2CSNH2) solutions containing different amounts of hydroxyethyl cellulose (HEC). Phase, morphologies, and optical properties were characterized by X-ray diffraction, selected area electron diffraction, scanning and transmission electron microscopy, and ultraviolet-visible spectroscopy. The products, hydrothermally synthesized in the HEC-free, 0.25 g HEC-added, 0.5 g HEC-added and 1.00 g HEC-added solutions, were respectively proved to be orthorhombic Bi2S3 irregular nanorods, complete urchin-like colonies of regular nanorods, incomplete urchin-like colonies of regular nanorods, and highly crystalline regular nanorods growing along the [001] direction. Tauc band gaps of the orthorhombic Bi2S3 nanorods, synthesized in the HEC-free, 0.25 g HEC-added, and 1.00 g HEC-added solutions were determined to be 3.0, 1.75 and 1.8 eV, respectively. Formation mechanism of orthorhombic Bi2S3 nanorods, synthesized in the HEC-free and HEC-added solutions, was also discussed at great detail.  相似文献   

18.
GaN nanowires and nanorods have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/V films at 900 °C in a quartz tube. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectrum were carried out to characterize the structure, morphology, and photoluminescence properties of GaN sample. The results show that the GaN nanowires and nanorods with pure hexagonal wurtzite structure have good emission properties. The growth direction of nanostructures is perpendicular to the fringes of (1 0 1) plane. The growth mechanism is also briefly discussed.  相似文献   

19.
Single-crystalline SnO2 nanowires with sizes of 4-14 nm in diameter and 100-500 nm in length were produced in a molten salt approach by using hydrothermal synthesized precursor. Structural characters of the nanowires were examined by X-ray diffraction and high-resolution electron transmission microscopy. Raman, photoluminescence and X-ray photoelectron spectra of the samples were examined under heat treatments. Three new Raman modes at 691, 514 and 358 cm−1 were recorded and assigned. The former two are attributed to activation of original Raman-forbidden A2uLO mode and the third is attributed to defects in small-sized nanowires. A strong photoluminescence is observed at about 600 nm, the temperature effects is examined and the origin of the PL process is discussed via X-ray photoelectron spectra.  相似文献   

20.
Unintentionally doped and zinc-doped indium nitride (U-InN and InN:Zn) films were deposited on (0 0 0 1) sapphire substrates by radio-frequency reactive magnetron sputtering, and all samples were then treated by annealing to form In2O3 films. U-InN and InN:Zn films have similar photon absorption characteristics. The as-deposited U-InN and InN:Zn film show the absorption edge, ∼1.8-1.9 eV. After the annealing process at 500 °C for 20 min, the absorption coefficient at the visible range apparently decreases, and the absorption edge is about 3.5 eV. Two emission peaks at 3.342 eV (371 nm) and 3.238 eV (383 nm) in the 20 K photoluminescence (PL) spectrum of In2O3:Zn films were identified as the free-exciton (FE) or the near band-to-band (B-B) and conduction-band-to-acceptor (C-A) recombination, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号