首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
Deuterium retention in two types of polycrystalline tungsten (PCW) was studied as a function of incident ion fluence, ion energy, and specimen temperature. (i) D retention at 300 K, as a function of D+ fluence, demonstrated a trend to saturation in both the Rembar hot-rolled thin foil and Plansee tungsten plate. At 500 K, new D retention results for the Plansee PCW showed an increasing trend with increasing incident D+ fluence without any indication of saturation, in agreement with previous results for Rembar PCW [A.A. Haasz, J.W. Davis, M. Poon, R.G. Macaulay-Newcombe, J. Nucl. Mater. 258-263 (1998) 889-895]. Even when the incident D+ fluence was increased to 8 × 1025 D+/m2, which is in the fluence range of plasma devices, there was still no sign of saturation. (ii) The temperature dependence results for the Plansee PCW show a decreasing trend in D retention as the temperature is increased from 300 to 500 K. These results differ from previous studies of Rembar PCW [A.A. Haasz, J.W. Davis, M. Poon, R.G. Macaulay-Newcombe, J. Nucl. Mater. 258-263 (1998) 889-895], but are similar to those seen for single crystal tungsten [M. Poon, A.A. Haasz, J.W. Davis, R.G. Macaulay-Newcombe, J. Nucl. Mater. 313-316 (2003) 199]; an explanation for the different behaviour is suggested. (iii) Varying the D+ energy from 100 to 500 eV/D+ plays a minor role in the amount of D retained, suggesting that D retention in W depends more on the W structure, incident ion fluence and specimen temperature, rather than on the incident ion energy when the energy is below the threshold for damage formation (∼960 eV for D on W).  相似文献   

3.
The use of electronegative species as primary ions considerably enhances the emission of positive secondary ions in SIMS. Considering furthermore that negative primary ions can be required due to instrumental configurations (e.g. the Cameca NanoSIMS 50 requires an opposite polarity of the primary and secondary ions), O ion bombardment is employed in SIMS analysis. These O ions are typically created in a duoplasmatron source, which suffers however from its low brightness and which is thus not suited for high resolution imaging applications. The development of new (electro)negative ion sources is thus necessary to optimize the analysis of electropositive elements in terms of lateral resolution and sensitivity.In this paper, we present the performance of a duoplasmatron ion source generating F, Cl, Br and I ion beams. In particular, we experimentally determine on a dedicated test bench the brightness of the source in the F, Cl, Br and I modes as a function of the gas pressure, the magnetic field strength and the arc current in the source. The obtained results are compared to the performances of the duoplasmatron in the standard O mode. In this context, a five times higher brightness was found for F (200 A/cm2 sr) compared to the standard O (42 A/cm2 sr).  相似文献   

4.
In order to understand the properties of ion tracks and the microstructural evolution under accumulation of ion tracks in UO2, 100 MeV Zr10+ and 210 MeV Xe14+ ions irradiation examinations have been done at a tandem accelerator facility of JAEA-Tokai, and it has been observed the microstructure by means of a transmission electron microscope (TEM) and a scanning electron microscope (SEM) in CRIEPI.Comparison of the diameter of ion tracks between UO2 and CeO2 under irradiation with 100 MeV Zr10+ and 210 MeV Xe14+ ions at room temperature clarify that the sensitivity on high density electronic excitation of UO2 is much less than that of CeO2. By the cross-sectional observation of UO2 under irradiation with 210 MeV Xe14+ ions at 300 °C, elliptical changes of fabricated pores that exist till ∼6 μm depth and the formation of dislocations have been observed in the ion fluence over 5 × 1014 ions/cm2. The drastic changes of surface morphology and inner structure in UO2 indicate that the overlapping of ion tracks will cause the point defects, enhance the diffusion of point defects and dislocations, and form the sub-grains at relatively low temperature.  相似文献   

5.
Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe+ ions at fluences of up to 3 × 1016 cm−2. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 °C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δσ2/Φ = 3.0(4) nm4, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 °C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co2Si → CoSi → CoSi2.  相似文献   

6.
Magnetron discharge as sputtering source can serve as an alternative tool for the study of the plasma-wall interaction, with applications for ITER divertor. The present work reports on the influence of the target power density and the nature of the projectile on the erosion of C and W targets. The experimental results concern the sputtering rate of carbon and tungsten targets of a d.c. magnetron discharge in argon and helium atmosphere, at different gas pressures in the range of 10-100 mTorr and discharge power densities up to 40 W cm−2 while the discharge current intensity was used as control parameter. In this investigation, carbon and tungsten sputtering rates were measured using two conventional methods based on gravimetric mass loss and profilometry. Target erosion profiles were compared with the profiles of the ion energy flux bombarding the target, calculated from a 2D fluid model.  相似文献   

7.
An experimental study confirms the possibility of nuclear fusion reactions initiating in metal-deuterium targets by bombarding them with ions that are not the reagents of the fusion reaction, in particular, with noble gas ions. The yields of (d,d) and (d,t) reactions were measured as functions of energy (0.4-3.2 MeV) and mass of incident ions (He+, Ne+, Ar+, Kr+ and Xe+). Irradiation by heavy ions produced a number of energetic deuterium atoms in the deuteride and deuterium + tritium metal targets. At ion energies of ∼0.1-1 MeV the d-d reaction yields are relatively high. A model of nuclear fusion reaction cross-sections in atomic collision cascades initiated by noble gas ion beam in metal-deuterium target is developed. The method for calculation tritium or deuterium recoil fluxes and the yield of d-d fusion reaction in subsequent collisions was proposed. It was shown that D(d,p)t and D(t,n)4He reactions mainly occur in energy region of the recoiled D-atom from 10 keV to 250 keV. The calculated probabilities of d-d and d-t fusion reactions were found to be in a good agreement with the experimental data.  相似文献   

8.
IPP Garching is currently developing a negative hydrogen ion RF source for the ITER neutral beam system. The source demonstrated already current densities in excess of the ITER requirements (>200 A/m2 D) at the required source pressure and electron/ion ratio, but with only small extraction area and limited pulse length. A new test facility (RADI) went recently into operation for the demonstration of the required (plasma) homogeneity of a large RF source and the modular driver concept.The source with the dimension of 0.8 m × 0.76 m has roughly the width and half the height of the ITER source; its modular driver concept will allow an easy extrapolation in only one direction to the full size ITER source. The RF power supply consists of two 180 kW, 1 MHz RF generators capable of 30 s pulses. A dummy grid matches the conductance of the ITER source. Full size extraction is presently not possible due to the lack of an insulator, a large size extraction system and a beam dump.The main parameters determining the performance of this “half-size” source are the negative ion and electron density in front of the grid as well as the homogeneity of their profiles across the grid. Those will be measured by optical emission and cavity ring down spectroscopy, by Langmuir probes and laser detachment. These methods have been calibrated to the extracted current densities achieved at the smaller source test facilities at IPP for similar source parameters. However, in order to get some information about the possible ion and electron currents, local single aperture extraction with a Faraday cup system is planned.  相似文献   

9.
The effects of argon ion irradiation on structural changes in Ta/Ti multilayers deposited on Si wafers were investigated. The starting structures consisted of sputter deposited 10 alternate Ta (∼23 nm) and Ti (∼17 nm) layers of a total thickness ∼200 nm. They were irradiated at room temperature with 200 keV Ar+, to the fluences from 5 × 1015 to 2 × 1016 ions/cm2. The projected ion range was around mid-depth of the multilayered structure, and maximum displacements per atom ∼130. It was found that, despite of the relatively heavy ion irradiation, individual nanocrystalline Ta and Ti layers remain unmixed, keeping the same level of interface planarity. The changes observed in the mostly affected region are increase in lateral dimensions of crystal grains in individual layers, and incorporation of bubbles and defects that cause some stretching of the crystal lattice. Absence of interlayer mixing is assigned to Ta-Ti immiscibility (reaction enthalpy ΔHf = +2 kJ/mol). It is estimated that up to ∼5 at.% interface mixing induced directly by collision cascades could be compensated by dynamic demixing due to chemical driving forces in the temperature relaxation regime. The results can be interesting towards developing radiation tolerant materials based on multilayered structures.  相似文献   

10.
Room temperature ferromagnetism was observed in (Li, Co) co-implanted ZnO films. The implantation energy for Co ions was 400 keV, while for Li ions were 50, 100 and 200 keV, respectively. The ion implantation induced defects and disorder has been observed by the XRD, PL and TEM experiments. For the co-implanted ZnO films with Li ion implantation energies of 100 and 200 keV, the band energy emission disappears and the defect related emission with wavelength of 500-700 nm dominates, which can be attributed to defects introduced by implantation. Co-implanted ZnO Films with Li ion implantation energies of 200 keV show a saturation magnetization value (MS) of over 9 × 10−5 emu and a positive coercive field of 60 Oe. The carrier concentration is not much improved after annealing and in the order of 1016 cm−3, which suggests that FM does not depend upon the presence of a significant carrier concentration. The origin of ferromagnetism behavior can be explained on the basis of electrons and defects that form bound magnetic polarons, which overlap to create a spin-split impurity band.  相似文献   

11.
To elucidate the underlying physics of ion beam assisted deposition (IBAD), irradiation damage effects in magnesia (MgO) and yttria-stabilized zirconia (YSZ) were investigated. Ion irradiations were performed on MgO and YSZ single crystals of three low-index crystallographic orientations using 100 and 150 keV Ar+ ions over a fluence range from 1 × 1014 to 5 × 1016 Ar/cm2. Damage accumulation was analyzed using Rutherford backscattering spectrometry combined with ion channeling. Damage evolution with increasing ion fluence proceeded via several characteristic stages and the total damage exhibited a strong dependence on crystallographic orientation. For both MgO and YSZ, damage anisotropy was maximal at a stage when the damage saturated, with the (1 1 0) crystallographic orientation being the most radiation damage resistant. The Ion/Atom ratio deposition parameter reported for IBAD of MgO and YSZ films was found to correlate with the damage plateau stage described above. Finally, the role of the Ion/Atom ratio is discussed in terms of radiation damage anisotropy mechanism.  相似文献   

12.
Bulk-compositional changes of Ni2Al3 and NiAl3 in a Ni-50 wt% Al alloy during ion etching have been investigated by transmission electron microscopy and energy dispersive X-ray spectroscopic analyses. After etching with 7, 5 and 3 keV Ar+ ions for 15, 24 and 100 h nickel contents in both Ni2Al3 and NiAl3 exceeded greatly those in the initial compounds and increased with the decrement of the sputtering energy. After 100 h etching with 3 keV Ar+ ions the compositions of these two compounds reached a similar value, about Ni80-83Al12-15Fe3-4Cr1-2 (at%). A synergistic action of preferential sputtering, radiation-induced segregation and radiation-enhanced diffusion enables the altered-layers at the top and bottom of the film extend through the whole film. The bulk-compositional changes are proposed to occur in the unsteady-state sputtering regime of ion etching and caused by an insufficient supply of matter in a thin film.  相似文献   

13.
Structural and compositional modification of InSb(0 0 1) single crystal surfaces induced by oblique incidence 2-5 keV Ar and Xe ion irradiation have been investigated by means of scanning tunneling and atomic force microscopies, and time-of-flight mass spectroscopy of secondary ion emission. In general, ion-induced patterns (networks of nanowires, or ripples) are angle of incidence- and fluence-dependent. Temperature dependences (from 300 to 600 K) of the RMS roughness and of the ripple wavelength have been determined for the samples bombarded with various fluences. Secondary ion emission from an InSb(0 0 1) surface exposed to 4.5 keV Ar+ ions has been investigated with a linear TOF spectrometer working in a static mode. Mass spectra of the sputtered In+, Sb+ and In2+ secondary ions have been measured both for the non-bombarded (0 0 1) surface and for the surface previously exposed to a fluence of 1016 ions/cm2. In+ and In2+ intensities for the irradiated sample are much higher in comparison to the non-bombarded one, whereas Sb+ ions show a reversed tendency. This behavior suggests a significant In-enrichment at the InSb(0 0 1) surface caused by the ion bombardment.  相似文献   

14.
This work reports on the surface characterisation of 2,2-bis[4-(2-hydroxy-3-methacryloxyl-oxypropoxy)phenyl]propane/triethylene glycol dimethacrylate bio-compatible resins after high energy He+ ion implantation treatments. The samples have been characterised by diffuse reflectance FT-IR, X-ray photo-electron spectroscopy, ultramicro-hardness and nano-scratch wear tests. In addition, osteblast cell assays MG-63 have been used to test the bio-compatibility of the resin surfaces after the ion implantation treatments.It has been observed that the maximum surface hardening of the resin surfaces is achieved at He-ion implantation energies of around 50 keV and fluences of 1 × 1016 cm−2. At 50 keV of He-ion bombardment, the wear rate of the resin surface decreases by a factor 2 with respect to the pristine resin. Finally, in vitro tests indicate that the He-ion implantation does not affect to the cell-proliferation behaviour of the UV-cured resins.The enhancement of the surface mechanical properties of these materials can have beneficial consequences, for instance in preventing wear and surface fatigue of bone-fixation prostheses, whose surfaces are continuously held to sliding and shearing contacts of sub-millimetre scale lengths.  相似文献   

15.
In the present study the differential cross sections of the 45Sc(p,p)45Sc reaction were measured. Two independent experiments were performed. At first a sandwiched thin ScBr3 target was used for beam energies ELAB = 2300-5500 keV (in steps of 25 and 50 keV) and for detector angles 140°, 160°, and 170°. Secondly a thick Sc2O3 sample was formed and irradiated for ELAB = 3100-5500 keV with a detector placed at 140°, to validate the results of the first measurement.  相似文献   

16.
We report the first fabrication and characterization of optical planar waveguides in Bi12TiO20 crystals by ion implantation. For comparison we selected O2+ and He+ as our implanted ions. The loss value of the oxygen-implanted planar waveguide is reduced to 1.24 dB/cm after annealing at 260 °C for 30 min. The guided-mode profiles are successfully modeled through numerical simulations.  相似文献   

17.
18.
The sputtering of bismuth thin films induced by 20-160 keV Ar+ ions has been studied using Rutherford backscattering spectrometry, scanning electron microscopy and X-ray energy dispersive and diffraction spectroscopy. These techniques revealed increasing modifications of the Bi film surfaces with increasing both ion beam energy and fluence up to their complete deterioration under irradiation conditions E = 160 keV and φ = 1.5 × 1016 cm−2, leaving isolated islands of preferred (0 1 2) orientation on the Si substrate. The observed surface morphology and crystalline structure evolutions are likely due to a complex interplay of interaction mechanisms involving both elastic nuclear collisions and inelastic electronic ones. The measured Bi sputtering yields versus Ar+ ion fluence for a fixed ion energy exhibit a significant depression at very low φ-values followed by a steady state regime above ∼2.0 × 1014 cm−2. Measured sputtering yields versus Ar+ ion energy with fixing ion fluence to 1.2 × 1016 cm−2 in the upper part of the yield saturation regime are also reported. Their comparison to theoretical model and SRIM 2008 Monte Carlo simulation predictions is discussed.  相似文献   

19.
We present a method to produce stable proton and helium ion beams with energies of 10-100 keV from a 30-year-old Van De Graaff accelerator using an external stabilized DC voltage supply instead of the belt charging system. Requiring no other modifications, this makes an ideal system for ion irradiation with fluences up to 1015 ions/cm2. Such ion energies and fluences are required in the emerging fields such as silicon micromachining using ion irradiation and we give examples of structures created with sizes as small as 200 nm.  相似文献   

20.
Rutherford backscattering spectrometry (RBS) in channelling mode was used to study the defect formation in silver (Ag) ion irradiated silicon carbide (SiC). The 4H-SiC samples were irradiated with 360 keV Ag ions at different temperatures (15, 295, 375, 475, 625 and 875 K) over a wide range of fluences (1×1011 to , depending on the irradiation temperature). The results can be divided into two groups: (i) for irradiation temperatures between 15 and 475 K amorphisation of the implanted layers is reached for ion fluences between 7×1013 and . The over-all cross-section of defect production at very low ion fluences which comprises the formation of point defects and of amorphous clusters, is almost identical for all data sets measured in this temperature range. Differences in the damage evolution which occur at higher ion fluences, suggest that the relative contribution of amorphous clusters within single ion impacts in crystalline material decreases with rising temperature. (ii) For irradiations performed at 625 and 875 K no amorphisation is found for ion fluences as high as . With increasing ion fluence the defect concentration exhibits a distinctive plateau due to the balance between formation and recombination of point defects before increasing up to a saturation level well below amorphisation. For this final stage our results indicate a mixture of point defect clusters and extended defects most probably dislocations. A comparison with data from the literature suggests that the damage evolution for implantation at 625 and 875 K is strongly influenced by the mobility of vacancies starting at around 600 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号