首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《炭素》2017,(1)
作为性能十分优异的高温热结构材料和制动摩擦材料,C/C-SiC炭陶复合材料广泛应用于多个领域。从RMI法制备C/C-SiC复合材料的反应机理、工艺过程及对材料性能的影响等方面进行了综述。介绍了C/C-SiC复合材料基体改性研究的进展。对RMI工艺方法今后的发展方向及研究重点进行了展望。  相似文献   

2.
《炭素》2017,(2)
介绍了C/C-SiC炭陶复合材料的几种制备方法及其优缺点,重点介绍了反应溶体浸渗法(RMI)的反应机理及研究进展。综述了C/C-SiC炭陶复合材料在航空航天领域、制动系统中的重要应用。  相似文献   

3.
以聚碳硅烷为原料,利用前驱体浸渍裂解工艺制备了C/C-SiC复合材料。分别研究了以二乙烯基苯和二甲苯为溶剂的聚碳硅烷溶液的粘度值,选择最佳的溶液对复合材料进行浸渍裂解,同时研究了浸渍工艺对复合材料致密度的影响,并对制备的C/C-SiC复合材料进行了微观结构分析。研究表明:以二甲苯为溶剂配制的质量比为0.4的聚碳硅烷溶液在35°C下具有良好的流动性,裂解产率较高;采用超声、真空加压浸渍方式能够有效提高C/C-SiC复合材料的致密度,缩短制备周期。通过9个周期的浸渍裂解,将复合材料的密度快速提升至1.85 g/cm~3,材料的最终开气孔率为12.50%,材料内部结构致密,力学性能优异。  相似文献   

4.
先驱体转化法制备C/C-SiC复合材料研究   总被引:1,自引:0,他引:1  
以多孔C/C复合材料为预制型,聚碳硅烷(PCS)为先驱体,制备了C/C-SiC复合材料。研究了浸渍液浓度和不同C/C复合材料预制体密度等级对C/C-SiC复合材料的密度和力学性能的影响。结果表明:当浸渍液浓度为50%时,复合材料的密度均达到最佳值;不同的预制体密度对制得的复合材料性能有很大的影响,其中初始密度为1.2g/cm3试样制得的复合材料性能达到最优,其密度达到1.786g/cm3,弯曲强度达204.1MPa,剪切强度为16.1MPa,断裂韧性为6.83MPa·m1/2。  相似文献   

5.
研究C/C预制体密度和反应温度对RMI法制备C/C-SiC复合材料密度、弯曲强度和微观结构的影响。实验通过化学气相渗透法(CVI)制备密度分别为1.2g/cm~3、1.4g/cm~3和1.6g/cm~3的低密度C/C多孔预制体,采用反应熔渗法(RMI)制备密度分别为2.21g/cm~3、2.18g/cm~3和1.82g/cm~3的C/C-SiC复合材料;将CVI制备的低密度C/C多孔预制体,采用RMI法在1500℃、1650℃和1800℃的反应温度下制备密度分别为1.79g/cm~3、2.18g/cm~3和2.41g/cm~3的C/C-SiC复合材料。结果表明:随着C/C预制体密度增加,C/C-SiC复合材料密度不断降低,弯曲强度呈先上升后下降的趋势,在C/C预制体密度为1.4g/cm~3时,材料的性能达到最优状态,材料的密度为2.18g/cm~3,弯曲强度为196.7MPa;随着RMI反应温度增加,C/C-SiC复合材料密度不断升高,材料弯曲强度呈先上升后下降的趋势,在反应温度为1650℃时,材料性能达到最优状态,材料密度为2.18g/cm~3,弯曲强度为196.7MPa。  相似文献   

6.
以正硅酸乙酯(TEOS)为硅源,酚醛树脂为碳源配制SiC先驱体,以编入了SiC粉末的炭纤维毡为预制体,采用先驱体浸渍裂解(PIP)与反应熔渗(RMI)相结合的方法制备出密度为1.93 g/cm3的C/C-SiC复合材料。借助X射线衍射仪和扫描电子显微镜(SEM)对先驱体及复合材料的相组成和微观结构进行分析。采用等离子体烧蚀枪进行烧蚀试验,测试C/C-SiC复合材料的耐烧蚀性能。烧蚀30 s后,材料表面保持完整,无明显裂纹及烧蚀坑,烧蚀中心出现了明显的氧化层及白色粉末状烧蚀产物,材料的质量烧蚀率和线烧蚀率分别为0.137 mg·s-1,5.50μm·s-1。  相似文献   

7.
对含石墨的炭/陶复合材料优良的抗热震性能进行了讨论。这种性质与石墨的导热系数大、断裂功高、热膨胀和弹性模量小密切相关。  相似文献   

8.
用先驱体浸渗裂解法制备了碳纤维增强碳(carbon fiber reinforced carbon,C/C)-SiC复合材料,用H2-D2火焰法检测其烧蚀性能.结果表明:C/C-SiC复合材料的烧蚀率随复合材料中的Si含量的增加而呈下降趋势;经过5次浸渍,C/C-SiC复合材料的密度从1.46 g/cm3增加到1.75 g/cm3,Si含量从5.06%增加到13.8%,线烧蚀率和质量烧蚀率分别下降474%和34.5%.密度为1.75g/cm3的C/C-SiC复合材料,其线烧蚀率和质量烧蚀率分别为2.22 μm/s和1.289 mg/s,其线烧蚀率和质量烧蚀率分别为密度1.78 g/cm3的C/C复合材料的21.7%和78.6%.基体中SiC的引入明显提高了C/C复合材料的抗氧化烧蚀性能.  相似文献   

9.
以针刺网胎无纬布为预制体,采用化学气相渗透(CVI)、压力浸渍树脂/炭化(PIC)及反应熔体浸渗法(RMI)等组合工艺快速制备C/C-SiC复合材料。研究了C/C多孔体的高温热处理温度对C/C-SiC复合材料微观结构和热学性能的影响,结果表明:多孔体经高温热处理后密度有所减小而孔隙率增大;相较于1800℃热处理,多孔体经2200℃热处理后制备的C/C-SiC复合材料密度更大(ρ=2.12g/cm3),孔隙率更低(η=2.7%),SiC基体含量更高(ω=41.11%);C/C-SiC复合材料的比热容和平均热膨胀系数随着温度的升高而增大,而热扩散系数和导热系数随着温度的升高不断减小;多孔体经2200℃热处理后制备的C/C-SiC复合材料X-Y向具有更大的导热系数和更小的热膨胀系数,其室温下的导热系数为83.120W/(m·K),室温~1000℃的平均热膨胀系数为1.608×10-6/℃。  相似文献   

10.
以纳米SiC粉为惰性填料,采用先驱体浸渍裂解法制备C/C-SiC复合材料,研究了不同纳米SiC含量浆料对复合材料致密过程及烧蚀性能的影响。结果表明,不同纳米SiC含量浆料对制得的复合材料性能有很大的影响,添加纳米SiC粉质量分数为16.67%时制得的复合材料性能最优,其最终密度为1.86 g/cm~3,开孔率为6.93%,线烧蚀率和质量烧蚀率分别为0.0041mm/s和0.0013g/s。  相似文献   

11.
《炭素》2018,(3)
采用无涂层、SiC涂层、C和SiC复合涂层处理的炭布/网胎预制体,经过CVD和树脂浸渍/炭化混合致密,制备了4种C/C坯体,随后熔融渗硅获得C/SiC复合材料;研究了不同纤维涂层、基体炭类型对C/SiC复合材料弯曲强度和断裂方式的影响,并对复合涂层状态的C/SiC材料的摩擦磨损性能进行测试。结果表明:混合基体炭与纯热解炭的C/C坯体相比,制备的RMI-C/SiC材料弯曲强度更高,且经过涂层处理的C/SiC材料弯曲强度最高;复合涂层、混合基体炭均使材料表现出良好的"假塑性"。复合涂层处理的试样在制动压力0.6~0.8 MPa、惯量0.3~0.4 kg·m~2、转速为6000~7500 r/min的条件下,平均摩擦系数为0.348~0.454,且材料磨损量较小,最大为2.188μm/(面·次)。  相似文献   

12.
实验选取高岭土作为陶瓷基体,以不同含量的鳞片石墨和碳化硅作为导电原料,充分利用炭材料优异的导电、导热性及耐高温性能和陶瓷材料优异的抗氧化性及机械强度,经混合、模压成型和烧结工艺制备出炭/陶复合电热材料。采用XRD和SEM对其物相组成和微观形貌进行分析表征,并对其通电发热性能以及抗氧化性能等进行了测试。研究了石墨以及碳化硅的含量对复合材料电热性能的影响,并对电热机理进行了初步的分析研究。本研究所制备的炭/陶复合材料具有优异的电热性能,在低电压下(10V)即可迅速升温,并在较高温度下保持相对稳定。研制的样品中最高发热温度可达631℃。通过将炭材料和陶瓷材料复合,可有效改善炭材料的抗氧化性,使其氧化失重温度升高200℃左右。  相似文献   

13.
以酚酞聚芳醚腈酮(PEK-CN)为基体、碳化硅(SiC)为导热填料,用硅烷偶联剂(KH550,KH560及KH570)对SiC进行表面改性,通过静电纺丝技术和高温模压法制备了PEK-CN/SiC复合材料,研究了SiC含量和不同偶联剂改性SiC对PEK-CN/SiC薄膜的微观形貌、PEK-CN/SiC复合材料的导热性能和热稳定性的影响。结果表明:偶联剂改性SiC后以及随着SiC含量的增加,PEK-CN/SiC复合材料的导热性能与热稳定性均有所改善。当经KH560表面改性的SiC质量分数为25%时,复合材料的导热系数最大,达到了0.586 W/(m·K),比PEK-CN导热系数提高了133.5%,玻璃化转变温度、失重5%及30%时的温度较PEK-CN分别提升了3.79,0.37,225.76℃。  相似文献   

14.
以碳化硼为基体,碳化硅为增强相,炭黑为烧结助剂,通过热压烧结工艺制备了B_4C-SiC复合材料。测试了其力学性能,并借助SEM对烧结体进行断口形貌观察。结果表明:在本实验条件下,当SiC添加量在9 wt%时材料力学性能最佳,体积密度为2.548 g/cm~3,相对密度为99.6%,抗弯强度为403 MPa,断裂韧性为5.26MPa·m~(1/2)。显微组织结构致密,晶粒细小、均匀。增韧机理主要为SiC颗粒弥散引起的钉扎效应和裂纹偏转。  相似文献   

15.
采用化学气相渗积工艺制备出密度分别为0.81,1.10,1.26,1.52 g/cm3的C/C复合材料坯体,再以聚碳硅烷(PCS)为先驱体,通过先驱体转化法制备出密度相近的C/C-SiC复合材料,并对它们的弯曲强度和抗氧化性能作了对比分析。结果表明:由密度为0.81 g/cm3的C/C复合材料坯体制得的C/C-SiC复合材料具有最高的弯曲强度,达265 MPa,具有最好的抗氧化性能,在1 000℃氧化2 h后失重率为2.61%。  相似文献   

16.
炭/陶复合材料的研究   总被引:6,自引:1,他引:5  
宋进仁  翟更太 《炭素》1996,(2):22-24
采用高温热压法,制备了炭/B.c,炭/金属钛及炭/B4C/金属钛三种炭/陶复合材料。着重研究了B4C、Ti的掺杂量对复合材料抗氧化能力的影响。结果表明,随着掺杂量的增加,复合材料的抗氧化能力提高。其中B4C的影响更显著。且炭、B4C、Ti三组份炭陶复合材料的抗氧化性较双组份复合材料更好一些。  相似文献   

17.
对反应熔渗法制备C/C-SiC复合材料过程中Si的渗入行为以及Si/C的反应机理和动力学进行了综合评述.分析了高温下Si的密度、粘度、表面张力及Si/C润湿角对渗入能力的影响.概括了Washburn公式及其改进模型在液Si渗入行为方面的研究进展,给出了渗入时间、SiC生成速率与渗入高度之间的关系.对控制Si/C反应的溶解-沉淀机理和扩散机理进行了阐述,总结分析得出:不同阶段Si/C反应发生的区域不同,因而控制反应的机理也不同.最终的SiC相是由不同反应机理共同作用形成的.  相似文献   

18.
C/C-SiC梯度基复合材料氧化行为研究   总被引:6,自引:0,他引:6  
研究比较了C/C-SiC梯度基复合材料和C/C复合材料的氧化行为.实验结果表明:SiC通过占据表面活性点提高了共沉积基体的氧化起始温度;由于减少了碳与氧的接触面积,阻挡氧化凹坑的扩展,降低了材料的氧化质量损失速率.利用SEM观察了梯度基复合材料微观氧化过程  相似文献   

19.
碳纳米管/炭复合材料的制备及其性能的研究   总被引:1,自引:0,他引:1  
对碳纳米管(CNTs)/炭复合材料的形态结构及力学性能进行了研究。采用XRD、Instronl211万能实验机等手段研究了碳纳米管的加入量对复合材料的结构和性能的影响,得出了CNTs/C复合材料的d002、石墨化度、Lc及La与CNTs加入量之间的相关性。结果表明,随着碳纳米管含量的增加,复合材料d002呈下降趋势,石墨化度呈上升趋势。材料的拉伸强度主要和碳纳米管与基体之间的结合力以及它们之间的界面积有关;随着碳管含量的增加,在开始阶段其拉伸强度呈增加的趋势,当碳纳米管含量达到25%时,拉伸强度达到最大值25.5MPa,随后下降,当CNTs含量增加到30%,拉伸强度降到10.6MPa,之后保持不变;而拉伸模量在最初阶段增加缓慢,当碳纳米管含量大于22%时,则一直呈上升趋势。  相似文献   

20.
以喷雾干燥的方法制备了锂离子电池负极用石墨烯/硅/炭复合材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)等方法表征不同石墨烯添加量对材料形貌、结构,并其电化学性能进行测试。结果表明,当石墨烯添加量为5%时复合材料的电化学性能最优异,首次充放电效率高达83.2%,在130 mA/g电流密度条件下循环25次后容量仍能保持在676.5 mA·h/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号