首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
以十六烷基三甲基溴化铵(CTAB)为取向模板,采用模板辅助化学氧化聚合技术制备了聚苯胺。通过聚苯胺与氧化石墨烯混合分散液的自组装得到石墨烯/聚苯胺复合薄膜材料。采用扫描电子显微镜、透射电子显微镜、傅里叶变换红外光谱,氮气吸附-脱附测试和电化学测试,分别表征聚苯胺和石墨烯/聚苯胺复合薄膜的形貌、结构、组分和电化学性能。结果表明,在CTAB作用下,合成了无规则纳米片状聚苯胺;当电流密度为0.5 A/g时,其比电容为470.8 F/g。石墨烯/聚苯胺复合薄膜的比表面积为43.2 m~2/g且表现为多级层状孔结构;将复合薄膜以三明治结构组装成全固态超级电容器测试其电化学性能。该复合薄膜表现出优异的面积比电容(在0.1 mA/cm~2的电流密度下达到292 mF/cm~2)和良好的循环稳定性。  相似文献   

2.
通过正负纳米片之间的静电吸引并热处理,有效合成了NiO/还原氧化石墨烯复合物,对样品进行了形貌、结构表征以及相应的电化学性能测试。研究结果表明,合成NiO/rGO的最佳质量比为m(NiO)∶m(rGO)=85∶15;复合物与纯NiO相比片状变薄,团聚现象有了明显改善。对样品进行循环伏安以及放电测试:最佳质量比的复合物在1 A/g时,比电容达到670 F/g,与纯材料相比比电容有了很大的提高。并且该复合材料在15 A/g时产物的比电容为486 F/g,其比电容是电流密度为1 A/g时的72.5%,具有良好的电化学性能。  相似文献   

3.
李学良  张波  肖正辉  张扬  陈飞 《广东化工》2013,40(6):8-9,16
通过乳液聚合制备具有类似金属导电性和超电容功能的氧化石墨烯/聚苯胺(GO-PANI)复合材料,聚合在组成为水,乙醇,二甲苯和十二烷基苯磺酸(DBSA)的乳液中进行。采用红外光谱对材料进行了表征,采用循环伏安法、交流阻抗和恒电流充放电进行了材料电化学性能的测试。结果表明氧化石墨烯/聚苯胺呈现高的超电容性能。在0.5 A/g电流密度下,摩尔比为3∶7材料的比电容高达444 F/g,远远超过了氧化石墨烯的比电容(134 F/g)。在50 mV/s下循环1000次,GO-PANI(3/7)仍呈现出高的比电容,达到412 F/g,仅减少7.2%。相对于纯聚苯胺比电容下降41.7%,复合材料GO-PANI具有优良的稳定性,显著提高复合材料容量保持率和循环寿命。  相似文献   

4.
采用改进的Hummers法制备氧化石墨烯(GO),在酸性条件(pH=5)下以180°C进行水热还原,通过调节水热反应时间来制备不同还原程度的还原氧化石墨烯(RGO)。研究了不同的水热反应时间对RGO结构及超级电容性能的影响。结果表明:控制水热反应时间可以制备出还原程度不同的RGO,在电化学测试中,随着水热反应时间的延长,RGO电极的比电容呈先上升后下降的趋势。当水热反应时间为6 h时,RGO电极表现出最佳的超级电容性能,其在1 A/g电流密度下比电容达到251 F/g,相对于GO电极提高了225%。经过500次充放电循环后,RGO-6电极比电容保持率达到92%,具有优异的循环稳定性。  相似文献   

5.
严正琦  高江姗  张鑫韬  南非  何燕 《化工学报》2019,70(12):4881-4888
采用改进的Hummers法制备氧化石墨烯(GO),在酸性条件(pH=5)下以180°C进行水热还原,通过调节水热反应时间来制备不同还原程度的还原氧化石墨烯(RGO)。研究了不同的水热反应时间对RGO结构及超级电容性能的影响。结果表明:控制水热反应时间可以制备出还原程度不同的RGO,在电化学测试中,随着水热反应时间的延长,RGO电极的比电容呈先上升后下降的趋势。当水热反应时间为6 h时,RGO电极表现出最佳的超级电容性能,其在1 A/g电流密度下比电容达到251 F/g,相对于GO电极提高了225%。经过500次充放电循环后,RGO-6电极比电容保持率达到92%,具有优异的循环稳定性。  相似文献   

6.
《弹性体》2016,(2)
以氧化石墨烯(GO)为氧化剂,在不加其它任何氧化剂的条件下,实现了苯胺的原位氧化聚合反应。采用傅里叶变换红外光谱(FTIR)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、拉曼光谱(Raman)和扫描电子显微镜(SEM)分析了复合材料的结构和形貌,并对复合材料的电化学性能进行了测试。结果表明,苯胺单体吸附在GO表面聚合,制备了一种"三明治"结构的复合物;复合材料表现了优良的电化学性能,当苯胺和GO的质量比为5∶1时,在0.5A/g的电流密度下,复合材料的比电容为624.2F/g,高于纯聚苯胺(PANI)的比电容;循环500次后,电容量保持率为79.6%,表现了良好的循环稳定性能。  相似文献   

7.
采用原位聚合法制备不同摩尔比的PANI/MoS_2纳米复合材料。通过X射线衍射、红外光谱、透射电镜等手段,对所制备的材料进行了结构和微观形貌的表征,结果表明:所制备的聚苯胺呈现棒状纳米纤维包覆在卷曲的纳米鳞片MoS_2片层上形成了PANI/MoS_2纳米复合材料。通过循环伏安法、恒流充放电等测试手段对材料的电化学性能进行了研究,结果表明:在不同电流密度下PANI∶MoS_2=1∶0.1的二元复合物比电容明显高于纯聚苯胺,在1 A/g时PANI∶MoS_2=1∶0.1的二元复合物的比电容值可达942.5 F/g,相比于同电流密度下的PANI的400.5 F/g的高出一倍。表明适量的MoS_2的掺入有助于提高PANI电极材料的电化学电容特性。  相似文献   

8.
用硼氢化钠(NaBH_4)还原氧化石墨烯得到还原石墨烯(rGO)分散液,rGO分散液与苯胺在酸性条件下原位聚合得到高比表面积三维有序结构的聚苯胺/石墨烯纳米复合材料。由场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线光电子能谱(XPS)和X射线衍射(XRD)对其表面形貌和结构进行表征。结果表明:复合材料的比表面积高达136.9 m~2/g,高于纯聚苯胺的比表面积(32.71 m~2/g);直径10~20 nm的聚苯胺纳米棒均匀地垂直生长在石墨烯表面。在0.5 A/g的电流密度下,复合材料比电容达到358 F/g,大于石墨烯和聚苯胺的比电容;当充放电电流密度由0.5 A/g增加到10 A/g时,电容保留率达74.3%,表现出增强的倍率性能;在10 A/g高电流密度下,经过500次的充放电循环后容量保持率达到83.7%。  相似文献   

9.
利用少量乙二胺作为还原剂,在水热条件下制备了还原氧化石墨烯/石墨烯量子点复合材料(rGO/GQDs)。由扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、红外光谱对材料的形貌和结构进行了表征,并研究了材料的电化学性能。结果表明:复合材料具有三维多孔结构和良好的电化学性能,在0. 3 A/g的电流密度下,复合材料的比电容达到了226. 54 F/g。在10 A/g电流密度下,经过10000次充放电循环后其比电容值仍为初始值的91. 4%。  相似文献   

10.
采用原位聚合法制备聚苯胺/石墨烯复合材料,以石墨烯与聚苯胺的摩尔比1∶3、1∶6、1∶10进行实验。探究后发现1∶6为最佳比例,其比电容可达513 F/g。再以一定量聚乙烯醇掺杂最佳比例聚苯胺/石墨烯,结果发现,所得复合材料应用与超级电容器中,最高比电容可达1044 F/g,经2000次充放电循环后,其比电容仍有916 F/g,证明复合材料稳定性远远大于聚苯胺稳定性。采用XRD、FT-IR、SEM、紫外-可见分光光度计进行结构和微观形貌分析。  相似文献   

11.
利用高导电性的氮化钛纳米线作为聚苯胺的生长基质,有效减少电极材料的电荷传输电阻,提升聚苯胺的超级电容储能性能。以碳纤维作为柔性基底,采用晶种辅助水热结合电化学聚合法制备了柔性聚苯胺/氮化钛纳米线电极材料(PANI/Ti N),电极材料呈现高度有序的同轴核壳纳米线结构,且纳米线之间彼此分离,有利于电解液离子的传输,提升储能性能。电流密度为1 A/g时,比电容为403 F/g;电流密度从0.5 A/g增加到10.0 A/g时,比电容保持率为初始容量的53.4%,电流密度为5 A/g时,循环充放电1 000次后PANI/Ti N的电容保持率为79.1%,与PANI相比均有较大提升,表明PANI/Ti N具有较好的电化学储能性质。以PANI/Ti N电极材料为电极构建柔性全固态对称型超级电容器(PANI/Ti N//PANI/Ti N)考察其应用性。PANI/Ti N//PANI/Ti N柔性超级电容器在电流密度为1 A/g时,比电容可达100.2 F/g,且在不同角度弯曲后比电容无明显衰减。当功率密度为500 W/kg时,能量密度可达50.1 W·h/kg,且1个单元的该超级电容器可驱动红色...  相似文献   

12.
采用水热法制备Mn3O4/石墨烯复合材料。石墨烯的含量对产物的形貌和结构有决定性的影响。当石墨烯与MnO2质量比1∶3时,制备得到MnOOH/石墨烯复合材料,当石墨烯与MnO2质量比1∶1时,制备得到Mn3O4/石墨烯复合材料。石墨烯与Mn3O4复合可使Mn3O4更大可能地释放赝电容,在电流密度2 A/g时,Mn3O4/石墨烯的比电容值为297.14 F/g。  相似文献   

13.
符刚  张秀玲 《现代化工》2023,(6):205-211
采用原位聚合法及水热法两步制备碳纳米管@聚苯胺/二硫化钼(C-P-M)和碳纳米管/二硫化钼@聚苯胺(C-M-P)2种复合物。通过改变材料的复合顺序以及钼源的种类来调控复合材料的形貌结构,探究其对电化学性能影响的根本原因,从而达到优化复合材料性能的目的。电化学测试结果表明,C-P-M的电化学储能性能优于C-M-P,并且以(NH4)2MoS4为Mo源合成的三元复合物(C-P-M-2)的性能要优于以Na2MoO4·2H2O为Mo源合成的三元复合物(C-P-M-1)。在电流密度为1 A/g时,C-P-M-2的比电容达到563.7 F/g;在电流密度为10 A/g下经过1 000圈循环稳定性测试,其比电容仍保留为原来的83%。  相似文献   

14.
采用脉冲电沉积一步合成得到石墨烯/聚苯胺(PANI)复合材料,通过SEM和XRD对材料的形貌和结构进行了表征,复合材料中聚苯胺为翠绿亚胺态,呈纤维状形貌。将所得石墨烯/PANI复合材料用作超级电容器电极进行电化学性能测试,比纯聚苯胺表现出更优异的超电容性能。电流密度为0.5A·g~(-1)时,石墨烯/PANI的比容量可达703F·g~(-1),且具有良好的倍率性能。  相似文献   

15.
石墨烯因其优异的导电性能和巨大的比表面积而被广泛应用于复合材料的研究。本文借助微晶石英天平采用循环伏安法一步电沉积制备了聚苯胺/石墨烯复合材料,其中所用到的石墨烯分散液是电解剥离法制备的。保持苯胺单体的浓度不变,观察改变石墨烯的含量对聚苯胺/石墨烯复合材料的制备的影响。结果表明,制得的复合材料的比电容高达1166 F/g。当苯胺单体浓度不变时,石墨烯的含量越高,循环伏安结果表明其电容性能也越好。所得的聚苯胺/石墨烯复合材料中石墨烯起到了良好的电子传输作用。  相似文献   

16.
结合Li插层法制备的单层MoS2,分别采用溶液法和乳液法原位聚合制备了聚苯胺/MoS2复合材料。由FT-IR光谱对其结构进行表征,由电化学工作站测试其做电容器电极材料的电化学性能。结果表明,相同MoS2用量下,乳液法制备的聚苯胺/MoS2复合材料在0.8 A/g电流密度下的比电容为245 F/g,是溶液法聚苯胺/MoS2复合材料的3倍;充放电1000圈后的比电容保持率为82%,比溶液法聚苯胺/MoS2复合材料高11%,显示出更好的电容性能。  相似文献   

17.
通过改性二氧化锰和氧化石墨烯片之间的静电自组装制备了层状的rGO/MnO2复合纳米材料。通过XRD分析材料的晶体结构,用扫描电镜观察材料的微观表面形貌。这种材料用来研究其电化学电容性能,结果表明这种纳米复合材料显示出很好的电容性能(在0.2 A/g的电流密度下可达246 F/g)。此外,在2 A/g的电流密度下循环1000次后容量保持率为91%。材料的性能提升是因为复合材料中二氧化锰纳米棒和石墨烯片层很好的贴合,而石墨烯片的加入也大大提高了材料的导电性。  相似文献   

18.
采用一步水热法,在乙二胺的辅助下,制备了硫化钴/石墨烯气凝胶(CoS/GA)复合材料。通过X射线衍射法(XRD)、扫描电镜(SEM)、电化学性能测试对材料进行了表征和测试。结果表明:制备的材料晶型规整,30~100 nm的CoS粒子均匀地分布在石墨烯气凝胶上。用作超级电容器时,在电流密度0.5 A/g时,CoS/GA复合材料比电容值达574 F/g,是纯CoS的1.4倍;充放电循环1 000次后,比电容保持率为94.4%。硫化钴/石墨烯复合材料的电化学性能较好,具有较大的比电容和较好的循环稳定性,是一种可用于超级电容器的较有潜力的电极材料。  相似文献   

19.
以三维泡沫镍(NF)为模板,在不添加模板剂的条件下,通过电沉积法沉积石墨烯(G),再采用水热合成制备纳米片二氧化锰(Mn O_2),得到自支撑电极复合材料G/Mn O_2/NF,改善其作为电极材料的电化学性能。用X射线衍射(XRD)、拉曼光谱(Raman)和扫描电子显微镜(SEM)对复合材料的微观结构和表面形貌进行分析,通过循环伏安(CV)、恒电流充放电(GCD)、交流阻抗(EIS)测试了电极复合材料的电化学性能。结果表明:在电流密度为1 A/g的条件下,复合电极材料的比电容达到722 F/g,经过1 000次循环后比电容保持率为97%。  相似文献   

20.
采用改进的Hummers法制备氧化石墨,将制备好的MnO_2微球均匀分散在氧化石墨烯分散液中,水热反应自组装制备MnO_2微球/石墨烯气凝胶复合材料(MnO_2/GA),对其物相、形貌、比表面积进行表征,并测试了其电化学性能。结果表明,MnO_2微球嵌入包覆在了石墨烯片层中,电流密度0.5 A·g~(-1)下,MnO_2/GA的比电容为175.5 F·g~(-1)高于MnO_2的比电容(78.4 F·g~(-1)),且经过1 000次循环,MnO_2/GA具有更稳定的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号