首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of laminar premixed natural gas flames has been studied experimentally and computationally with variable mole fractions of hydrogen (0, 20, and 60%) present in the fuel mixture. All flames were operated at low pressure (0.079 atm) and at variable overall equivalence ratios (0.74<?<1.0) with constant cold gas velocity. At the same global equivalence ratio, there is no significant effect of the replacement of natural gas by 20% of H2. The small differences recorded for the intermediate species and combustion products are directly due to the decrease of the amount of initial carbon. However, in 60% H2 flame, the reduction of hydrocarbon species is due both to kinetic effects and to the decrease of initial carbon mole fraction. The investigation of natural gas and natural gas/hydrogen flames at similar C/O enabled identification of the real effects of hydrogen. It was shown that the presence of hydrogen under lean conditions activated the H-abstraction reactions with H atoms rather than OH and O, as is customary in rich flames of neat hydrocarbons. It was also demonstrated that the presence of H2 favors CO formation.  相似文献   

2.
NOx emission indices were experimentally measured for partially premixed laminar flames of five different H2/CO/CO2 fuels over a wide range of equivalence ratios. Through those fuels, the effects of H2/CO ratio and CO2 concentration on NOx emissions, flame appearance, visible flame height and flame temperature are presented. EINOx values increase when 1.0 ≤ Φ ≤ 1.6, then remain near the highest value, before decreasing slowly when 3.85 ≤ Φ ≤ ∞. The increase of the CO2 concentration reduces the EINOx for the whole range of equivalence ratios, while the increase in the H2/CO ratio reduces the EINOx when Φ ≤ 2.0 and is inconsequential for richer mixtures. The variation in flame temperatures approximates EINOx trends. The variation of flame color from blue to orange when the H2/CO ratio is increased might be explained by higher CO levels in by-product combustion.  相似文献   

3.
Quantitative measurements of hydrogen cyanide (HCN) were nonintrusively performed using mid-infrared polarization spectroscopy (IRPS) in atmospheric pressure flames. The lifted flat, laminar, premixed CH4/N2O/O2/N2 flames were stabilized on a 7 cm diameter home-built McKenna-type burner with variable proportion of N2O and O2. The characteristic spectral structure of HCN molecules was identified in the rotational line-resolved IRPS spectra collected in flames at around 3248 cm−1. The P20 line belonging to the CH stretching band was chosen for quantitative measurements and the line-integrated IRPS signal was recorded in a series of fuel-rich CH4/O2/N2O/N2 flames with equivalence ratios of 1.2, 1.4 and 1.6. Absolute mole fractions of HCN molecules in these flames were obtained through in situ calibration of the optical system with nonreactive gas flow of N2 seeded with known amount of HCN on the same burner. Moreover, the experimental results were compared with calculations performed using the Konnov detailed C/H/N/O mechanism, which implements NCN prompt-NO reactions. Generally good agreement was found with some discrepancies indicating the need for further model improvement.  相似文献   

4.
The onset of cellular instability in adiabatic H2/O2/N2 premixed flames anchored to a heat-flux burner is investigated numerically. Both hydrodynamic instability and diffusional-thermal instability are shown to play an important role in the onset of cellular flames. The burner can effectively suppress cellular instability when the flames are close to the burner, otherwise the burner can suppress the instabilities only at large wavenumbers. Because of differential diffusion, local extinction can occur in lean H2/O2/N2 flames. When the flames develop to take on cellular shapes, the surface length, the overall heat release rate and the mean burning velocity are all increased. For near stoichiometric fuel-rich flames the mean burning velocity can increase by as much as 20%–30%. For lean flames with an equivalence ratio of 0.56, the mean burning velocity can be 2–3 times of the burning velocity of the corresponding planar flame.  相似文献   

5.
Laminar flame speeds of lean premixed H2/CO/air mixtures were measured in the counterflow configuration over a wide range of H2 content at lean conditions. The values were determined by extrapolating the referenced flame speed to zero stretch rate using the non-linear extrapolation method to reduce the systematic error. Detailed calculation of laminar flame speed was also conducted using PREMIX code coupled with three different kinetic models. In general, simulation results agreed well with the experimental data. Both the experimental and calculation results revealed that the laminar flame speeds of lean premixed H2/CO/air mixtures increased with H2 content significantly when H2 content was small (?15%) and gradually when H2 content was large (>15%).  相似文献   

6.
Laminar flame speed has traditionally been used for the partial validation of flame kinetics. In most cases, however, its accurate determination requires extensive data processing and/or extrapolations, thus rendering the measurement of this fundamental flame property indirect. Additionally, the presence of flame front instabilities does not conform to the definition of laminar flame speed. This is the case for Le<1 flames, with the most notable example being ultralean H2/air flames, which develop cellular structures at low strain rates so that determination of laminar flame speeds for such mixtures is not possible. Thus, this low-temperature regime of H2 oxidation has not been validated systematically in flames. In the present investigation, an alternative/supplemental approach is proposed that includes the experimental determination of extinction strain rates for these flames, and these rates are compared with the predictions of direct numerical simulations. This approach is meaningful for two reasons: (1) Extinction strain rates can be measured directly, as opposed to laminar flame speeds, and (2) while the unstretched lean H2/air flames are cellular, the stretched ones are not, thus making comparisons between experiment and simulations meaningful. Such comparisons revealed serious discrepancies between experiments and simulations for ultralean H2/air flames by using four kinetic mechanisms. Additional studies were conducted for lean and near-stoichiometric H2/air flames diluted with various amounts of N2. Similarly to the ultralean flames, significant discrepancies between experimental and predicted extinction strain rates were also found. To identify the possible sources of such discrepancies, the effect of uncertainties on the diffusion coefficients was assessed and an improved treatment of diffusion coefficients was advanced and implemented. Under the conditions considered in this study, the sensitivity of diffusion coefficients to the extinction response was found to be significant and, for certain species, greater than that of the kinetic rate constants.  相似文献   

7.
The centerbody burner was designed with the objective of understanding the coupled processes of soot formation, growth, and burnout. Fuel that issues from the center of the burner establishes two flame zones – one associated with the recirculation zone (RZ) and the other, with the trailing jet. The sooting characteristics in these two flame zones can be quite different because of variations in residence time and transport of reactants and products. Calculations performed for this burner operating under a partially premixed fuel jet suggested that soot in the RZ decreases and that soot in the trailing jet flame increases with the amount of premixing. An experimental and numerical study is performed to aid the understanding of these differences. A time-dependent, axisymmetric, detailed-chemistry computational-fluid-dynamics (CFD) model known as Unsteady Ignition and Combustion using ReactioNs (UNICORN) is used for simulating flames under different equivalence-ratio conditions. Combustion and PAH formation are modeled using the Wang–Frenklach (99 species and 1066 reactions) mechanism, and soot is simulated using a two-equation model of Lindstedt. A Lagrangian-based particle-tracking model is used for understanding the evolution of soot-like particles. Flame and recirculation-zone structures and soot in the experiments are identified using direct photographs taken with and without Mie scattering from soot particles as well as laser-induced-incandescence (LII) measurements. Calculations predict the structures of the partially premixed centerbody flames for various equivalence ratios reasonably well. Experiments confirm the predicted soot suppression in the RZs and enhancement of soot in the trailing jet flame when air is added to the fuel jet. It is found that flame movement in the RZ increases soot-particle burnout and, thereby, reduces the amount of soot within the RZ. As the flame moves closer to the fuel jet, more soot becomes entrained into the inner vortex. Motion of soot-like particles explained the spiral rings observed in the experiment. Increased particle burnout with partial premixing leads to shrinkage of soot spirals.  相似文献   

8.
In this study, we investigated the H2-induced transition of confined swirl flames from the “V” to “M” shape. H2-enriched lean premixed CH4/H2/air flames with H2 fractions up to 80% were conducted. The flame structure was obtained with Planar Laser-Induced Fluorescence (PLIF) of the OH radical. Flow fields were measured with Particle Image Velocimetry (PIV). It was observed that the flame tip in the outer shear layer gradually propagated upstream and finally anchored to the injector with the hydrogen fractions increase, yielding the transition from the “V” to “M” flame. We examined the flame structures and the flame flow dynamics during the transition. The shape transition was directly related to the evolution of the corner flame along the outer shear layer. With H2 addition, the outer recirculation zone first appeared downstream where the corner flame started to propagate upstream; then, the recirculation zone expanded upward to form a stable “M” flame gradually. The flow straining was observed to influence the stabilization of the outer shear layer flame significantly. This study can be useful for the understanding of recirculation-stabilized swirling flames with strong confinement. The flame structure and the flow characteristics of flames with a high H2 content are also valuable for model validation.  相似文献   

9.
An experimental study to identify the effect of hydrogen enrichment and differential diffusion on the flame broadening is conducted. Turbulent lean premixed flames in the Broadened Preheat–Thin Reaction (BP-TR) regime are obtained. The flames are stabilized on a Bunsen burner and CH4/H2/air mixtures are adopted with three hydrogen fractions of 0, 30% and 60%. The preheat zone and heat release zone are captured with the multi-species Planar Laser-Induced Fluorescence (PLIF) of OH and CH2O radicals. Flame thicknesses of the preheat and heat release layers are measured. Results show broadened preheat zone and thin heat release layers for the flames, as predicted by the BP-TR regime. The preheat zone thickness can be increased to about 3–6 times compared to the laminar preheat thickness. An apparently decreased preheat zone thickness with hydrogen addition is observed. The differential diffusion is anticipated to locally thicken the heat release zone along the flame front. The mean heat release thickness is nearly not affected by the turbulence or hydrogen addition.  相似文献   

10.
The effects of variations in the fuel composition on the characteristics of H2/CO/CH4/air flames of gasified biomass are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position and temperature are performed in the premixed stoichiometric H2/CO/CH4/air opposed-jet flames with various H2 and CO contents in the fuel. The adiabatic flame temperatures and laminar burning velocities are calculated using the EQUIL and PREMIX codes of Chemkin collection 3.5, respectively. Whereas the flame structures of the laminar premixed stoichiometric H2/CO/CH4/air opposed-jet flames are simulated using the OPPDIF package with the GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position and temperature of the stoichiometric H2/CO/CH4/air opposed-jet flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that the reaction rate of reactions (R38), (R46), and (R84) increase with increasing H2 content in the fuel mixture. It is also found that the increase in the laminar flame speed with H2 addition is most likely due to an increase in active radicals during combustion (chemical effect), rather than from changes in the adiabatic flame temperature (thermal effect). Chemical kinetic structure and sensitivity analyses indicate that for the stoichiometric H2/CO/CH4/air flames with fixed H2 concentration in the fuel mixture, the reactions (R99) and (R46) play a dominant role in affecting the laminar burning velocity as the CO content in the fuel is increased.  相似文献   

11.
《Combustion and Flame》2014,161(2):427-437
Combustion in stratified mixtures is envisaged in practical energy systems such as direct-injection spark-ignited (DISI) car engines, gas turbines, for reducing CO2 and pollutant emissions while protecting their efficiency. The mixture gradients change the fundamental properties of the flame, especially by a difference in temperature and composition between the burnt gases and those of a flame consuming a homogeneous mixture. This paper presents an investigation of the properties of the flame propagating in a lean homogeneous mixture after ignition in a richer mixture according to the magnitude of the stratification. Three magnitudes of stratification are investigated. The local flame burning velocity is determined by an original PIV algorithm developed previously. The local equivalence ratio in the fresh gases is measured from anisole PLIF. From the simultaneous PIV–PLIF measurements, the flame burning velocities conditioned on the local stretch rate and equivalence ratio in fresh gases are measured. The flame propagating through the homogeneous lean mixture has properties depending on the ignition conditions in the stratified layer. The flame propagating in the lean mixture is back-supported longer for ignition under the richer condition. The change of stretch sensitivity and burning velocity of the flame in the lean mixture is measured over time for the three magnitudes of mixture stratification investigated. The ignition in richer mixtures compensates for the nonequidiffusion effect of lean propane flame and sustains its robustness to stretch. The flame propagation in the lean homogeneous mixture is enhanced by ignition in a richer stratified layer, as much by their robustness to stretch as by an increase in the flame speed or the burning velocity. The decay time of this influence of the stratification, called memory effect, is determined.  相似文献   

12.
A combined experimental and numerical investigation on the effects of H2 addition to lean-premixed CH4 flames in highly strained counterflow fields (with strain rates up to 8000 s−1) using preheated flows indicate significant enhancement of lean flammability limits and extinction strain rates for relatively small amounts of H2 addition. Numerical modeling of the counterflow opposed jet configuration used in this study indicated extinction strain rates which were within 5% of experimentally measured values for equivalence ratios ranging from 0.75 to less than 0.4. Both experimental and numerical results indicate that increasing H2 in the fuel significantly increases flame speeds and thus extinction strain rates. Furthermore, increasing H2 decreases the dependency of extinction equivalence ratio on the strain rate of the flow. For all of the mixtures investigated, extinction temperatures depend primarily on equivalence ratio and not fuel composition for the range of H2 content studied, which suggests that extinction can be correlated to flame temperature and O2 concentration. Nonetheless, H2 addition greatly increases the maximum allowable strain rate before extinction temperatures are reached. Inspection of the model-predicted species profiles suggest that the enhancement of CH4 burning rates with H2 addition is driven by early H2 breakdown increasing radical production rates early in the flame zone to enhance CH4 ignition under conditions where otherwise CH4 combustion might be prone to undergo extinction.  相似文献   

13.
The addition of dimethoxymethane (DMM or methylal) and diethoxymethane (DEM or ethylal) to a rich ethylene/oxygen/argon flame has been investigated by measuring the depletion of soot precursors. Three rich premixed ethylene/oxygen/argon (with and without added methylal or ethylal) flat flames have been stabilized at low-pressure (50 mbar) on a Spalding–Botha type burner with the same equivalence ratio of 2.50. Identification and monitoring of signal intensity profiles of species within the flames have been carried out by using molecular beam mass spectrometry (M.B.M.S.). The replacement of some C2H4 by C3H8O2 or C5H12O2 is responsible for a decrease of the maximum mole fractions of the detected intermediate species. This phenomenon is noticeable for C2–C4 intermediates and becomes more effective for C5–C10 species, mainly when C3H8O2 added.A new kinetic model has been elaborated and contains 546 reactions and 107 chemical species in order to simulate the three investigated flames: C2H4/O2/Ar, C2H4/DMM/O2/Ar and C2H4/DEM/O2/Ar. The reaction mechanism well reproduces experimental mole fraction profiles of major and intermediate species, and underlines the effect of methylal and ethylal addition on species concentration profiles for these flames.  相似文献   

14.
Flame front structure of turbulent premixed CH4/H2/air flames at various hydrogen fractions was investigated with OH-PLIF technique. A nozzle-type burner was used to achieve the stabilized turbulent premixed flames. Hot-wire anemometer measurement and OH-PLIF observation were performed to measure the turbulent flow and detect the instantaneous flame front structure, respectively. The hydrogen fractions of 0%, 5%, 10% and 20% were studied. Results show that the flame front structures of the turbulent premixed flames are wrinkled flame front with small scale convex and concave structures compared to that of the laminar-flame front. The wrinkle intensity of flame front is promoted with the increase of turbulence intensity as well as hydrogen fraction. Hydrogen addition promotes the flame intrinsic instability which leads to the active response of laminar flame to turbulence and results in the much more wrinkled flame front structure. The value of ST/SL increases monotonically with the increase of u′/SL and hydrogen fraction. The increase of ST/SL with the increase of hydrogen fraction is mainly attributed to the diffusive-thermal instability effects represented by the effective Lewis number, Leeff. A general correlation between ST/SL and u′/SL is provided from the experimental data fitting in the form of ST/SL ∝ a(u′/SL)n, and the exponent, n, gives the constant value of 0.35 for all conditions and at various hydrogen fractions.  相似文献   

15.
NCN profiles were measured for five rich and lean premixed, low-pressure methane flames using laser-induced fluorescence (LIF). A semiquantitative determination of the NCN mole fractions as a function of spatial height above the burner is made by calibrating the NCN LIF signals using highly accurate OH LIF measurements in an adjacent spectral region. The resulting calibration yields an uncertainty estimate of a factor of 3 for the absolute values, but only ±25% for the relative NCN profiles. For all flame conditions, the NCN profiles occur immediately downstream of previously measured CH profiles. In addition, high correlations are found between the peak CH and peak NCN concentrations and the peak NCN and postflame NO concentrations over all equivalence ratios. These observations are consistent with NCN being the primary product channel from the CH + N2 reaction and the initial intermediate in the prompt NO formation. This is the first mechanistic study in hydrocarbon flames that provides such experimental evidence. The experimental profiles are compared to numerical calculations using modified versions of two well-established hydrocarbon kinetic mechanisms. Reasonable agreement between the calculations and experiment is found for NCN profile shape, location of peak NCN concentrations, and absolute mole fractions. However, the dependence on stoichiometry of the peak NCN concentration is overestimated. Further work is required on NCN kinetics for modeling prompt NO in laminar premixed flames.  相似文献   

16.
17.
Extinction studies of weakly-stretched near-limit lean premixed syngas/air flames were conducted in a twin-flame counterflow configuration. Experiments showed that buoyancy-induced natural convection at normal gravity strongly disturbed these flames. In order to validate the simulation, accurate extinction data was obtained at micro-gravity. Experimental data obtained from the 3.6 s micro-gravity drop tower showed that the extinction equivalence ratio increased with the increasing global stretch rate and decreased with the increasing H2 mole fraction in the fuel. Numerical simulation was conducted with CHEMKIN software using GRI 3.0 and USC-Mech II mechanisms. The predicted extinction limit trend was in agreement with the micro-gravity experimental data. Sensitivity analyses showed that the competition between the main branching reaction H + O2 ⇔ O + OH and the main termination reaction H + O2 + M ⇔ HO2 + M in the H2/O2 chemistry determined the extinction limits of the flames. The dominant species for syngas/air flame extinction was the H radical. The key exothermal reaction changed from OH + CO ⇔ H + CO2 to OH + H2 ⇔ H + H2O with the increasing H2 mole fraction in the fuel. Also, the mass diffusion played a more important role than chemical kinetics in the flame extinction. When the H2 mass diffusion was suppressed, the reaction zone was pushed to the stagnation plane and the flame became weaker; while H mass diffusion is suppressed, the reaction zone slightly shifted towards the upstream and the flame was slightly strengthened.  相似文献   

18.
Borohydrides such as Mg(BH4)2 and Ca(BH4)2 continue to attract attention as potential hydrogen storage materials because of their high hydrogen content. In this study the desorption kinetics of Mg(BH4)2, Ca(BH4)2 and a 5Mg(BH4)2/Ca(BH4)2 mixture of the two were compared in the two-phase region at the same temperature and at a constant pressure thermodynamic driving force. The rate of hydrogen desorption from the two-phase region in the 5Mg(BH4)2/Ca(BH4)2 mixture was faster than that from either of the constituents. This indicated that Ca(BH4)2 was able to serve as a destabilizing agent for Mg(BH4)2. The results also showed that the desorption rates from the two-phase region were much faster than those from the single phase region. Modeling studies showed that the rate of hydrogen release from Mg(BH4)2, during the first 80% of the reaction, is diffusion controlled while in Ca(BH4)2 the reaction rate is phase boundary controlled. In the mixture the rate appears to be under the mixed control of both processes.  相似文献   

19.
The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames.  相似文献   

20.
Effects of flame stretch on the laminar burning velocities of near-limit fuel-lean methane/air flames have been studied experimentally using a microgravity environment to minimize the complications of buoyancy. Outwardly propagating spherical flames were employed to assess the sensitivities of the laminar burning velocity to flame stretch, represented by Markstein lengths, and the fundamental laminar burning velocities of unstretched flames. Resulting data were reported for methane/air mixtures at ambient temperature and pressure, over the specific range of equivalence ratio that extended from 0.512 (the microgravity flammability limit found in the combustion chamber) to 0.601. Present measurements of unstretched laminar burning velocities were in good agreement with the unique existing microgravity data set at all measured equivalence ratios. Most of previous 1-g experiments using a variety of experimental techniques, however, appeared to give significantly higher burning velocities than the microgravity results. Furthermore, the burning velocities predicted by three chemical reaction mechanisms, which have been tuned primarily under off-limit conditions, were also considerably higher than the present experimental data. Additional results of the present investigation were derived for the overall activation energy and corresponding Zeldovich numbers, and the variation of the global flame Lewis numbers with equivalence ratio. The implications of these results were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号