首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Enrichment of nickel at the alloy/film interface and incorporation of nickel species into the anodic film have been examined for a sputtering-deposited Al-1.2at.%Ni alloy in order to assist understanding of oxygen generation in barrier anodic alumina films. Anodizing of the alloy proceeds in two stages similarly to other dilute aluminium alloys, for example Al-Cr and Al-Cu alloys, where the Gibbs free energies per equivalent for formation of alloying element oxide exceeds the value for alumina. In the first stage, a nickel-free alumina film is formed, with nickel enriching in an alloy layer, 2 nm thick, immediately beneath the anodic oxide film. In the second stage, nickel atoms are oxidized together with aluminium, with oxygen generation forming gas bubbles within the anodic oxide film. This stage commences after accumulation of about 5.4 × 1015 nickel atoms cm−2 in the enriched alloy layer. Oxygen generation also occurs when a thin layer of the alloy, containing about 2.0 × 1019 nickel atoms m−2, on electropolished aluminium, is completely anodized, contrasting with thin Al-Cr and Al-Cu alloy layers on electropolished aluminium, for which oxygen generation is essentially absent. A mechanism of oxygen generation, based on electron impurity levels of amorphous alumina and local oxide compositions, is discussed in order to explain the observations.  相似文献   

2.
Yusuke Mito 《Corrosion Science》2009,51(7):1540-1544
Photo-luminescence emission was measured from the thin passive oxide film on nickel and chromium under the in-situ condition in 0.1 kmol m−3 (M) sulfuric acid solution at pH 0.9 and neutral buffer solution of borate-boric acid mixture at pH 8.4 in order to obtain the insight of the electronic properties in the passive oxide film as thin as a few nm. The photo-luminescence induced by UV laser beam at 325 nm wavelength from nickel oxidized in both pH 0.9 sulfuric acid and pH 8.4 borate buffer solutions exhibited a broad spectrum feature with a peak at 400-420 nm. The energy of the peak wavelength from 400 to 420 nm is 2.95-3.10 eV which may correspond to the band-gap energy of the semiconduncting NiO. The photo-luminescence spectra from chromium oxidized in the sulfuric acid and neutral borate solutions had a peak at 400 nm and about 440 nm, respectively. These photo-emission from nickel and chromium oxidized is assumed to correspond to luminescence accompanied by recombination between excess electrons produced by UV light illumination in the conduction band and positive holes in the valence band. The broad tailing of the luminescence at longer wavelength side may represent high density of localized states originated in an amorphous nature of the passive oxides.  相似文献   

3.
The corrosion behaviour of zinc deposits obtained under pulsed current electrodeposition from an acidic chloride bath in the presence and absence of coumarin has been investigated. The effects of pulse peak current density (Jp) on the morphology of zinc deposits were studied by scanning electron microscopy. An increase in Jp from 40 to 280 A dm−2 yields deposits with a finer grain size. The refinement of the grain size was more considerable in the presence of coumarin (Jp = 280 A dm−2). The preferred orientation of zinc deposits was studied by X-ray diffraction. At Jp = 40 A dm−2, the preferred orientation of zinc deposits was (1 0 3) and changed to (0 0 2) at Jp = 80 A dm−2. An increase in Jp to 280 A dm−2 did not change the preferred crystallographic orientations except for an increase in the peak intensity of the (0 0 2) plane. In the presence of coumarin, the preferred crystallographic orientations changed at Jp = 280 A dm−2 from the (0 0 2) plane to the (1 0 3) plane. The corrosion behaviour was investigated in an aerated 3.5% NaCl solution; the anodic polarization and electrochemical impedance spectroscopy curves were performed. The corrosion resistance of zinc deposits was improved by increasing the pulse peak current density (Jp); whereas, the presence of coumarin did not improve the corrosion resistance.  相似文献   

4.
Potential-time curves are constructed for the steel electrode in naturally aerated Ca(OH)2 solutions simulating the corrosion behavior in concrete. Cl and SO42− ions cause the destruction of passivity and initiation of pitting corrosion. The rate of oxide film growth by Ca(OH)2 and oxide film destruction by Cl and SO42− ions follows a direct logarithmic law as evident from the linear relationships between the open-circuit potential and the logarithm of immersion time. Chromate, phosphate, nitrite, tungstate and molybdate ions inhibit the pitting corrosion of steel. The rate of oxide film healing and thickening increases with their concentrations. In presence of constant inhibitor concentration, the efficiency of pitting inhibition increases in the order: (weak) CrO42− < HPO42− < NO2 < WO42− < MoO42− (strong).  相似文献   

5.
The stability and compressibility of Langmuir films of dococyltriethylammonium bromide (C22TAB) and 1-octadecanol (C18OH) and their mixtures on water surfaces were first investigated. Langmuir-Blodgett films were transferred onto iron substrate. Their effect on corrosion of iron in carbon dioxide containing brine were investigated by electrochemical methods. The C18OH formed a thin homogenous film with molecular area 19.4 Å2 at 36 mN m−1 at water surface. The films of C22TAB and C22TAB/C18OH mixtures were less dense, with 31 Å2 molecular area at 36 mN m−1 at water surface. The corrosion rate of iron substrate was reduced by 95% by deposition film of C18OH, while the corrosion rate of iron was reduced by 60% for films of C22TAB and C22TAB/C18OH mixtures.  相似文献   

6.
Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 °C were found to lower the corrosion rate of austenitic stainless steel (UNS S30400) by about a factor of five, relative to a non-zinc baseline test [S.E. Ziemniak, M. Hanson, Corros. Sci. 44 (2002) 2209] after 10,000 h. Characterizations of the corrosion oxide layer via grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy in combination with argon ion milling and target factor analysis, revealed that miscibility gaps in two spinel binaries—Fe(Fe1−mCrm)2O4 and (Fe1−nZnn)Fe2O4—play a significant role in determining the composition and structure of the corrosion layer(s). Although compositions of the inner and outer corrosion oxide layers represent solvus phases in the Fe3O4-FeCr2O4 binary, zinc(II) ion incorporation into both phases leads to further phase separation in the outer (ferrite) layer. Recrystallization of the low zinc content ferrite solvus phase is seen to produce an extremely fine grain size (∼20 nm), which is comparable in size to grains in the inner layer and which is known to impart resistance to corrosion. Zinc(II) ion incorporation into the inner layer creates additional corrosion oxide film stabilization by further reducing the unit cell dimension via the substitution reaction
0.2Zn2+(aq)+Fe(Fe0.35Cr0.65)2O4(s)?0.2Fe2+(aq)+(Zn0.2Fe0.8)(Fe0.35Cr0.65)2O4(s)  相似文献   

7.
Aqueous solutions with 3 mol L−1 (M) diethanolamine (DEA) concentration are extensively used in the gas processing industry to remove acid gases. However, the degradation of the DEA and the formation of heat-stable salts (HSS) lead to severe corrosion problems. Even worse, equipment corrosion can be magnified by the unavoidable presence of sulphide acid and dissolved oxygen as a result of hydrocarbon (natural gases and crude oil) processing. The aim of this work is to study the combined corrosion effects of DEA, sulphide acid and oxygen on carbon steel. Electrochemical methods revealed that in the 3 M DEA medium without oxygen, corrosion processes are modulated by adsorbed DEA film formation. Furthermore, it was shown that the addition of oxygen and 15 × 10−3 mol L−1 (15 mM) H2S produced the formation of an adherent film on the carbon steel surface. Chemical analyses by EDAX revealed a homogeneous film of corrosion products composed of iron oxide and sulphide formed in DEA solution containing O2 and H2S, respectively. Equivalent circuits were used to estimate the parameters associated with ion diffusion through the formed corrosion films. The results showed that the presence of H2S induced the formation of thin iron sulphide films that provide protective properties to the metal. It is concluded that the presence of oxygen in a sweetening plant should be avoided as DEA degradation can be produced with the subsequent decrease in chelating process efficiency and the increase in corrosion problems.  相似文献   

8.
H.L. Du  P.K. Datta  X. Wu 《Corrosion Science》2007,49(5):2406-2420
High temperature corrosion behaviour of three TiAl-based intermetallic alloys - Ti-44Al-8Nb-1B, Ti-46Al-8Nb-1B and Ti-48Al-2Nb-2Cr-1B (at.%) - was studied in an environment of H2/H2S/H2O yielding pS2 ∼ 6.8 × 10−1 Pa and pO2 ∼ 1.2 × 10−15 Pa potentials at 850 °C. The kinetic results obtained by a discontinuous gravimetric method indicate that increase in Al and Nb concentrations led to enhanced high temperature corrosion resistance, the corrosion resistance decreasing in the order: Ti-46Al-8Nb-1B > Ti-44Al-8Nb-1B > Ti-48Al-2Nb-2Cr-1B. The scale development studies using SEM, TEM, EDX, WDS and XRD confirmed the formation of a multilayered scale on all materials. An outer layer consisting of TiO2 existed beneath which an Al2O3 layer was present. Then a layer of TiO2 formed again, below which an Al-enriched NbAl3 was observed. A TiS layer was found beneath the NbAl3 layer. The formation of TiS led to the development of a NbAl3 band between the multilayered scale and the substrate.  相似文献   

9.
The electrochemical corrosion behaviour of Pb-free Sn-8.5Zn-0.05Al-XGa and Sn-3Ag-0.5Cu alloys was investigated in 3.5% NaCl solution by using potentiodynamic polarization techniques. The results obtained from polarization studies revealed that there was a negative shift in the corrosion potential with increase in Ga content from 0.02 to 0.2 wt% in the Sn-8.5Zn-0.05Al-XGa alloy. These changes were also reflected in the corrosion current density (Icorr) value, corrosion rate and linear polarization resistance (LPR) of the four element alloy. However, for Sn-3Ag-0.5Cu alloy a significant increase in the corrosion rate and corrosion current density was observed as compared to the four element alloys. SIMS depth profile results established that ZnO present on the outer surface of Sn-8.5Zn-0.05Al-0.05Ga alloy played a major role in the formation of the oxide film. Oxides of Sn, Al and Ga contributed a little towards the formation of film on the outer surface of the alloy. On the other hand, Ag2O was primarily responsible for the formation of the oxide film on the outer surface of Sn-3Ag-0.5Cu alloy.  相似文献   

10.
A microwave driven low pressure plasma reactor is developed based on a modi?ed Plasmaline antenna for plasma processing of polyethylene terephthalate (PET) foils and bottles. It allows for the treatment of thermolabile packaging materials, e.g. plasma sterilization and permeation barrier coating. Silicon oxide ?lms are deposited on PET foils as a permeation barrier coating. A pulsed hexamethyldisiloxane:oxygen plasma is ignited under various conditions and the oxygen permeation is investigated. A criterion for the homogeneous deposition of SiOx coatings is described depending on the residence time of process gases. Additionally, the composition of the coatings is analyzed by means of Fourier transform infrared spectroscopy regarding carbon and hydrogen content. A strong relation between barrier properties and ?lm composition is found: good oxygen barriers are observed as carbon content is reduced and ?lms become inorganic, quartz-like. A residual permeation as low as = 1.0 ± 0.3 cm3 m− 2 day− 1bar− 1 for SiOx coated PET foils is achieved. The dependencies of important plasma parameters, such as gas mixture, process pressure, power and pulse conditions on oxygen permeation through packaging foil are shown to optimize the coating process.  相似文献   

11.
The cathodic reduction of duplex air-formed oxide film on copper was performed at a constant current density of ic = −50 μA cm−2 in deaerated 0.1 M KCl solution to investigate the sequence of cathodic reduction of each oxide layer and its mechanism. The single-phase thick CuO film on copper was also cathodically reduced at ic = −50 μA cm−2 or −2.5 mA cm−2. The surface characterizations of the air-formed oxide film and single-phase CuO film before cathodic reduction and after partial or complete cathodic reduction were performed by XPS and X-ray diffraction, respectively.The two plateau regions appeared in the potential vs. time curve during cathodic reduction of the duplex air-formed oxide film on copper, while one plateau region was observed in the potential-time curve during cathodic reduction of the single-phase CuO film on copper. The potential in the first plateau region for the air-formed film coincided with that in the plateau region for the CuO film. The results of XPS and X-ray diffraction suggested that in the first plateau region, the outer CuO layer is directly reduced to metallic Cu, while in the second plateau region, the inner Cu2O layer is reduced to metallic Cu.  相似文献   

12.
The method of multicycle chronoammetry of RRDE makes it possible to obtain separately the partial currents of metal electrode ionization, anodic oxide formation and chemical oxide dissolution. The method is tested for Ag∣Ag2O∣OH(H2O) system. In the range of low anodic potentials (0.48 ÷ 0.51 V) the process of active silver dissolution prevails; the phase formation current rapidly drops. At higher potentials (0.52 ÷ 0.53 V) the phase formation current prevails and noticeably exceeds the rate of the chemical oxide dissolution. The thickness of Ag2O film rapidly increases; and the net phase formation current is close to 100%.  相似文献   

13.
The polarization characteristics of Sn-8.5Zn-0.5Ag-0.1Al-XGa lead-free solders were investigated in 3.5% NaCl solution where X ranges from 0.05-1.5 wt%. The results show that Ga affects the anodic polarization behaviour of the solders. Passivation behaviour is observed for all the investigated Sn-8.5Zn-0.5Ag-0.1Al-XGa solders. Increase in the Ga content from 0.05 to 0.25 wt% increases the ability for passivation but the oxide film formed due to passivity is not so protective. However Ga content > 0.25 wt% enhances corrosion and decreases the protective power of the passive film. The magnitude of the passivation current densities depend on the composition of the solders and the potentials applied. Layers of oxides of tin and zinc are responsible for the passivation behaviour. XRD and SEM results revealed the formation of corrosion products like SnO, ZnO, SnO2 at different potentials during the polarization study.  相似文献   

14.
Electrochemical techniques, weight loss method and surface analysis were used to study the synergistic inhibition offered by Zn2+ and piperidin-1-yl-phosphonic acid (PPA) to the corrosion of Armco iron in 3% chloride solution. It is observed that the combination between PPA and Zn2+ shows excellent inhibition efficiency. The potentiodynamic polarization curves reveal that 5 × 10−3 mol l−1 of PPA has only 76.7% inhibition efficiency whereas the mixture containing 5 × 10−3 mol l−1 PPA -20%Zn2+ has 90.2% inhibition efficiency. This suggests that a synergistic effect exists between Zn2+ and PPA. The Fourier transform infrared (FTIR) spectrum of the film formed on iron indicates phosphonates zinc salt formation. A suitable mechanism of corrosion inhibition is proposed based on the results obtained. The surface film analysis showed that in the absence of Zn2+, the protective film consists of Fe2+-PPA complex formed on the anodic sites of the metal surface, whereas in the presence of Zn2+, the protective film consists of Fe2+-PPA complex and Zn(OH)2.  相似文献   

15.
Chromates conversion coatings provide very effective corrosion protection for many metals. However, the high toxicity of chromate leads to an increasing interest in using non-toxic alternatives such as molybdates, silicates, rare earth metal ions and etc. In this work, quartz crystal microbalance (QCM) was applied as an in-situ technique to follow the film formation process on zinc (plated on gold) in acidic solutions containing an inorganic inhibitor, i.e. potassium chromate, sodium silicate, sodium molybdate or cerium nitrate. Using an equation derived in this work, the interfacial mass change during the film formation process under different conditions was calculated, indicating three different film formation mechanisms. In the presence of K2CrO4 or Na2SiO3, the film growth follows a mix-parabolic law, showing a process controlled by both ion diffusion and surface reaction. The apparent kinetic equations are 0.4t = −17.4 + 20Δmf + (Δmf)2 and 0.1t = 19.0 + 8.4Δmf + 10(Δmf)2 respectively (t and Δm are in seconds and μg/cm2). In solutions containing Na2MoO4, a logarithmic law of Δmf = −24.7 + 6.6 ln t was observed. Changing the inhibitor to Ce(NO3)3, the film growth was found to obey an asymptote law that could be fit into the equation of Δmf = 55.1(1 − exp(−2.6 × 10−3t)).  相似文献   

16.
The corrosion resistance of Ti-5%Ta-2%Nb alloy and DOCTOR (double oxide coating on titanium for reconditioning) coated titanium by O5+ ion irradiation were compared and investigated for their corrosion behaviour. O5+ ion irradiations were carried out at a dose rate of 1 × 1017, 1 × 1018 and 1 × 1019 ions/m2 at 116 MeV. The surface properties and corrosion resistance were evaluated by using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), glancing-angle X-ray diffraction (GXRD) and electrochemical testing methods. The results of electrochemical investigations in 11.5 N HNO3 indicated that the open circuit potential (OCP) of DOCTOR coated titanium is nobler than Ti-5%Ta-2%Nb alloy. The potentiodynamic polarization study of Ti-5%Ta-2%Nb alloy and DOCTOR coated specimen indicated decrease in passive current density with increase in ion doses (1 × 1017 to 1 × 1019 ions/m2) indicating decrease in anodic dissolution. Nyquist arc behaviour in the electrochemical impedance study substantiated the enhancement in oxide layer stability by O5+ ion irradiation. AFM results revealed that the DOCTOR coated Ti surface was dense without gross voids, and the surface roughness decreased by O5+ ion irradiation, but increased after corrosion test. EDX and GXRD patterns of DOCTOR coated Ti sample indicated that the coating was mainly composed of rutile TiO2. Based on the above results, the O5+ ion irradiation effect on corrosion behavior of Ti-5%Ta-2%Nb alloy and DOCTOR coated titanium are discussed in this paper.  相似文献   

17.
The aim of this paper is to study the effect of N+ ion implantation on corrosion and phase formation on the implanted surfaces of Ti-6Al-4V and Ti-6Al-7Nb alloys. Nitrogen ion was implanted on Ti-6Al-4V and Ti-6Al-7Nb alloys at an energy of 70 and 100 keV, respectively using a 150 keV accelerator at different doses ranging from 5 × 1015 to 2.5 × 1017 ions/cm2. Electrochemical studies have been carried out in Ringer’s solution in order to determine the optimum dose that can give good corrosion resistance in a simulated body fluid condition. The implanted surfaces of such modified doses were electrochemically passivated at 1.0 V for an hour. Secondary ion mass spectroscopy was used to study and characterize titanium oxide and titanium nitride layers produced on implanted surface and to correlate them with the corrosion resistance. The nature of the passive film of the implanted-passivated specimen was compared with the unimplanted-passivated as well as as-implanted specimens.  相似文献   

18.
The passivation of Nd-Fe-B permanent magnet was investigated in neutral borate solution at pH 8.4. The thickness of the passive oxide film on the magnets was measured by ellipsometry and the composition was estimated by glow discharge optical emission spectroscopy (GD-OES).The passivation of the magnets takes place in the potential range between −0.2 and 1.0 V vs. Ag/AgCl/Sat. KCl. In the potential range, current density decays to the lower than 10−6 A cm−2 after potentiostatic oxidation for 1800 s. The passive oxide film growth is assumed to be optically simulated from a model with a homogeneous film with complex refractive index, N = 2.1 − j0.086. The thickness estimated from the refractive index linearly increases with potential from 3.6 nm at −0.2 V to 7.8 nm at 1.0 V. The passive film growth follows the ionic migration model under high electric field, i.e., the Cabrera-Mott growth model. The ionic conductivity estimated from the model is about κ = 1.7 × 10−16 Ω−1 cm−1. The passive oxide film is preferentially composed of iron oxide/hydroxide. Boron and neodymium are, respectively, concentrated at the surface of the oxide film and at the inner layer in the oxide film.  相似文献   

19.
Isothermal compression testing of Ti-22Al-25Nb alloy was carried out at deformation temperatures between 940 and 1060 °C with strain rate between 0.001 and 10 s−1, and a height reduction of 50%. The hot deformation behavior of Ti-22Al-25Nb alloy was characterized based on an analysis of the stress-strain behavior, kinetics and the processing map, for obtaining optimum processing windows and achieving desired microstructures during hot working. The constitutive equation was established, which described the flow stress as a function of the strain rate and deformation temperature. The apparent activation energies were calculated to be 788.77 kJ/mol in the α2 + β/B2 + O phase region and 436.23 kJ/mol in the α2 + B2 phase region, respectively. Based on Dynamic Material Model and the Murty instability criterion, the processing map for the Ti-22Al-25Nb alloy was constructed for strain of 0.6. The map exhibits a stable domain for the temperature range of 940-1060 °C and strain rate range of 0.001-0.1 s−1 with two peaks in power dissipation of 51 and 56%, occurring at 940 °C/0.001 s−1 and 1060 °C/0.001 s−1, respectively. One is associated with lamellar globularization, and the other displays a phenomenon of recrystallization. Therefore, the desired processing condition of the Ti-22Al-25Nb alloy is 940 °C/0.001 s−1 in the α2 + β/B2 + O phase field. Moreover, the material also undergoes flow instabilities at strain rates higher than 1 s−1. This instability domain exhibits flow localization and adiabatic shear bands which should be avoided during hot processing in order to obtain satisfactory properties.  相似文献   

20.
Corrosion resistance of glassy Ni55Co5Nb20Ti10Zr10 (at.%) alloy in 1 N HCl solution was investigated with respect to the electrochemical behavior and the compositions of the passive film and the underlying alloy surface just below the passive film. The potentiostatic polarization curve indicated that the alloy was spontaneously passivated with a low passive current density of the order of 10−3 A m−2. The quantitative X-ray photo-electron spectroscopy (XPS) analysis revealed that the thickness of the surface film increased linearly with an anodizing ratio of 1.5 nm V−1. The high corrosion resistance of the glassy alloy was due to the formation of niobium, titanium and zirconium-enriched passive film. The growth mechanism of the passive films is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号