首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 531 毫秒
1.
以神府3#煤为原料,采用KOH-水蒸气活化法制备了煤基活性炭和氢气.考察了浸渍比、活化温度、活化时间对活性炭吸附性能和活化过程中氢气产量的影响,并对其活化机理进行了探讨.结果表明,活性炭碘值、亚甲基蓝值以及氢气产量受这些工艺参数影响很大,当浸渍比为0.5,活化温度为700℃,单元活化时间为10 min时,所制得的活性炭性能较好,碘值达到837 mg/g,亚甲基蓝吸附值达到431 mg/g,此时H2产量约33.1 mmol/g煤.  相似文献   

2.
物理-化学耦合活化法制煤基活性炭   总被引:1,自引:0,他引:1  
以神府3#煤为原料,氢氧化钾为化学活化剂,水蒸气为物理活化剂,探讨了物理-化学耦合活化法制备煤基活性炭的工艺条件和耦合活化机理,考察了氢氧化钾与煤的浸渍比、活化温度及总活化时间对活性炭性能的影响.结果表明,当活化温度为700 ℃,碱渍比为0.5,活化时间为60 min时,活性炭的性能较好,碘吸附值为837 mg/g,亚甲基蓝吸附值为409 mg/g, BET比表面积943 m2/g,总孔容积达0.31 cm3/g,煤副产氢气约58 mmol/g.  相似文献   

3.
以神府3^-1煤为原料,研究了KOH催化水蒸气活化法制备活性炭,并联产H2的主要影响因素,分析了浸溃比、活化温度、活化时间对活性炭吸附性能和H2产量的影响规律,归纳总结了耦合活化机理。结果表明,当KOH与煤浸渍比为0.5,活化温度为700℃,单元活化时间为10min时,制得的活性炭性能较好,碘值达到851mg/g,亚甲基蓝吸附值达到431mg/g,此时H2产量约33.1mmoL/g。  相似文献   

4.
热解活化法制备高吸附性能椰壳活性炭   总被引:1,自引:1,他引:0  
以椰壳为原料,采用高温直接热解活化法制备高吸附性能活性炭。研究了活化温度、活化时间对活性炭吸附性能的影响。研究结果表明,活化温度为 900 ℃,热解活化时间为 8 h,升温速率为 10 ℃/min,制得碘吸附值为 1 628.54 mg/g,亚甲基蓝吸附值为 375 mg/g 的高吸附性能椰壳活性炭,得率为 9.41 %。氮气吸附实验结果表明,该活性炭比表面积 1 723 m2/g、总孔容积 0.87 cm3/g、微孔容积 0.68 cm3/g、中孔容积0.18 cm3/g、平均孔径 2.03 nm。热解活化制备的椰壳活性炭样品性能优于市售水蒸气法椰壳净水活性炭国家标准。  相似文献   

5.
石莼基微/中孔复合结构活性炭的制备及性能   总被引:1,自引:0,他引:1  
以海洋海藻废弃物石莼为原料,通过热解预炭化,KOH活化制备活性炭。以碘吸附值和亚甲基蓝吸附值为吸附性能评价指标,探究了活化工艺对活性炭吸附性能的影响。结果表明,当KOH与石莼半焦质量比(碱炭比)为3.0∶1.0、活化时间为45 min、活化温度为800℃时,活性炭吸附性能最优,其碘吸附值和亚甲基蓝吸附值最大,分别为1824.19 mg/g、914.98 mg/g。FTIR测试表明,活性炭含有大量羟基等官能团。SEM测试表明,活性炭表面粗糙、存在大量孔结构。活性炭的BET比表面积为2616.3 m2/g,Langmuir比表面积高达4883.5 m2/g,平均孔径为2.73 nm。石莼基活性炭的孔结构为微/中孔复合结构,有作为储能、环保材料的潜质。  相似文献   

6.
以机制炭废弃炭颗粒为原料,水蒸汽法物理活化制备吸附性能较佳且得率较高的活性炭。通过正交试验设计,研究活化温度、活化时间和水蒸气用量对活性炭吸附性能、活化得率和固定碳含量的影响。得到最佳活化工艺条件为:活化时间1.5h、活化温度950℃、水蒸汽用量700-750g/h。制得活性炭的碘吸附值1162mg/g,亚甲基蓝吸附值9.5ml/0.1g,活化得率36.67%。  相似文献   

7.
提出用二氧化碳活化法再生乙酸乙烯合成用触媒载体活性炭工艺。研究了活化温度、活化时间和二氧化碳流量对活性炭吸附性能和得率的影响。确定最佳工艺条件为活化温度1 273 K,活化时间100 m in,二氧化碳流量0.5 L/m in,在此条件下得到的活性炭碘吸附值为1 091.33 mg/g,乙酸吸附值为518.30 mg/g,强度为72%,活化得率为80.33%,并对制得的活性炭做了比表面积测定和孔结构分析。再生后的活性炭强度和乙酸吸附值均达到标准,符合乙酸乙烯合成用触媒载体活性炭的要求。  相似文献   

8.
NaOH活化法制备煤基活性炭的研究   总被引:2,自引:0,他引:2  
以焦作无烟煤为原料,NaOH为活化剂,采用化学活化法制备煤基活性炭,分别考察了碱炭比、活化温度和活化时间等工艺参数对活性炭吸附性能和收率的影响;利用低温N2吸附法对活性炭的比表面积、总孔容及孔径分布进行了表征.结果表明,在碱炭比为4,活化温度为750℃和活化时间为1 h的条件下,可以制得比表面积为2 483 m2/g,总孔容为1.41 cm3/g,碘吸附值为2 530 mg/g,亚甲蓝吸附值为418 mg/g的煤基活性炭.  相似文献   

9.
采用磷酸活化木质素磺酸钠(Na-Ls)制备活性炭,考查磷酸浓度和活化温度对活性炭碘吸附值及得率的影响,优化制备条件.利用扫描电镜对活性炭进行了形貌表征.结果表明,活性炭制备的最佳条件为:磷酸浓度为34wt%,活化温度800℃.所得活性炭的孔结构呈裂隙状,碘吸附值为1 259.3 mg/g.利用热失重和傅里叶变换红外光谱等方法,研究了磷酸活化木质素的热分解过程和发生的物质变化.结果表明,磷酸在Na-Ls的热分解中涉及交联、催化、氧化反应;磷酸的加入改变Na-Ls热解途径的同时提高了其高温热稳定性;磷酸浓度和活化温度是影响活性炭成孔及吸附性能的重要因素.  相似文献   

10.
探讨了活化温度、活化时间、水蒸气流量对再生后活性炭吸附性能和得率的影响,得到了最佳工艺条件:活化温度1 000℃,活化时间60 min,水蒸气流量2.23 g/min。该工艺条件下再生活性炭的碘吸附值1 174.37 mg/g,亚甲基蓝吸附值200 mL/g,得率为62.87%。再生后活性炭的吸附指标达到国家一级品的标准,其中亚甲基蓝吸附值是国家一级品标准的2.22倍。同时,测定了该活性炭氮吸附,通过BET计算了活性炭的比表面积,通过密度函数理论(DFT)表征了活性炭的孔结构。结果表明:该活性炭为微孔型,BET比表面积为1 254.51 m2/g,总孔容为0.592 6 mL/g。  相似文献   

11.
沈朴  汪晓芹  薛博 《煤炭转化》2012,35(2):89-94
以多种陕北机制兰炭为原料,采用KOH活化法,在氮气氛的管式炉中进行高温活化,制备出了BET比表面为810.017 2m2/g,BJH平均孔径为6.579 3 nm的活性炭.考察了活化温度、时间、碱炭比、碱炭混合方式和兰炭种类等对活性炭吸附性能的影响,确定活性炭的最佳制备工艺为:以兴茂兰炭为原料,KOH干粉法活化,活化条件为800℃下1h,碱炭比为5∶1.  相似文献   

12.
磷酸法水稻秆活性炭的制备   总被引:3,自引:1,他引:2  
以水稻秆为原料,采用磷酸活化法制备活性炭。研究了浸渍比、活化温度对活性炭样品吸附性能的影响,并对其微结构进行N2吸附等温线、热重-微商热重法(TG-DTG)、扫描电子显微镜(SEM)等表征。结果表明:水稻秆适合作为磷酸法活性炭的原料,吸附性能达到市售脱色活性炭的指标要求。在浸渍比为3∶1、活化温度 450 ℃、活化时间 60 min 的条件下,制得活性炭的亚甲基蓝吸附值 215 mg/g,碘吸附值 855 mg/g,A法焦糖脱色率 110 %,BET比表面积 967.72 m2/g,总孔容积 1.23 cm3/g,中孔率 84.6 %,平均孔径 4.6 nm。  相似文献   

13.
易牡丹  丘克强 《应用化工》2012,41(7):1127-1131
采用CO2活化法以阻燃的FR-1型酚醛树脂基板为原料制备出性能优良的活性炭。研究了活化温度、活化时间和气体流量对产品性能的影响。所得产品BET比表面积达到1 198 m2/g,总孔体积达到0.703 cm3/g。在最佳条件,即活化温度910℃,活化时间140 min和CO2流量350 cm3/min时,亚甲基蓝值和碘值分别达到292.0 mg/g和1 113.05 mg/g,均达到国家一级品标准。  相似文献   

14.
杨晓霞  周安宁  曹振恒  张耀霞 《陕西化工》2012,(9):1637-1639,1660
在NaOH的催化作用下,通过水蒸气活化法制备了神府煤基活性炭和H2。探讨了NaOH/煤质量比、活化时间、活化温度等工艺条件对活性炭性能和H2产量的影响。结果表明,在活化温度为700℃,NaOH/煤质量比为0.5,单元活化时间为10 min的工艺条件下,可以制得碘值为635 mg/g,亚甲基蓝值为280 mg/g的活性炭,此时H2产量约17.9 mmol/g煤。  相似文献   

15.
易牡丹  丘克强 《陕西化工》2012,(7):1127-1131
采用CO2活化法以阻燃的FR-1型酚醛树脂基板为原料制备出性能优良的活性炭。研究了活化温度、活化时间和气体流量对产品性能的影响。所得产品BET比表面积达到1198m^2/g,总孔体积达到0.703cm^3/g。在最佳条件,即活化温度910℃,活化时间140rain和CO2流量350cm。/min时,亚甲基蓝值和碘值分别达到292.0mg/g和1113.05mg/g,均达到国家一级品标准。  相似文献   

16.
以生物质炭为原料,采用氯化锌活化制备高比表面积微孔生物质活性炭,研究了浸渍比、活化剂浓度、活化温度与活化时间等条件对生物质活性炭吸附性能的影响,利用氮气吸附脱附、扫描电子显微镜、傅里叶红外光谱、X射线衍射等技术对生物质活性炭表面微观结构、形貌特征及化学结构进行了分析。结果表明,制备生物质活性炭的适宜工艺条件为:浸渍比为3,活化剂质量分数为40%,活化温度为600℃,活化时间为90min。在该条件下制备的生物质活性炭对亚甲基蓝的吸附值为213mg/g,超过国家水处理用活性炭一级品标准。经测试生物质活性炭的BET比表面积高达631.2m2/g,平均孔径2.23nm,总孔容为0.352cm3/g;孔隙结构发达,孔径分布狭窄,孔形状为排列整齐的蜂窝状结构,含有大量的微孔,84.4%的孔集中在2nm以内;表面存在醇羟基、羰基、醚、酚等含氧官能团。  相似文献   

17.
The effects of activation temperature and impregnation ratio on the pore structure and surface chemistry of activated carbons derived from jackfruit peel with chemical activation method using phosphoric acid as activating agent were studied. Activated carbons with well-developed pore sizes were produced at activation temperatures of 450 and 550 °C. The BET surface areas and total pore volumes of the carbons produced at these temperatures are in the range of 907–1260 m2/g and 0.525–0.733 cm3/g, respectively.  相似文献   

18.
Carbonaceous adsorbents with controllable pore sizes derived from carbonized pistachio shells (i.e., char) were prepared by the KOH activation and steam activation methods in this work. The pore properties including the BET surface area, pore volume, pore size distribution, and pore diameter of these activated carbons were characterized by the t-plot method based on N2 adsorption isotherms. Through varying the KOH/char ratios from 0.5 to 3, the KOH-activated carbons exhibited BET surface areas ranging from 731 to 1687 m2/g with a similar micropore content (80–92%). The carbons activated by steam at 830 °C for 2 h had a BET surface area of 821 m2/g with the micropore content of 42%. The micropore/total pore volume ratio (Vmicro/Vpore) and average pore size (Dpore) were independent of the KOH/char ratio, revealing that KOH activation is a powerful method in developing and controlling the number of micropores with a very similar pore size distribution. The adsorption equilibria and kinetics of methylene blue, basic brown 1, acid blue 74, 2,4-dichlorophenol, 4-chlorophenol, and phenol from water on all activated carbons at 30 °C were investigated to demonstrate the fact that adsorption of organics is not only dependent upon the BET surface area but is also determined by the relative size between pores and molecules. The adsorption isotherms were subjected to the model fitting according to Langmuir and Freudlich equations. By comparing the projected area of adsorbates, the surface coverage of phenols is about 3.6 times of that of dyes (based on unit gram of activated carbon). The Elovich equation was found to suitably describe the adsorption process of all KOH-activated carbons while the adsorption behavior on the steam-activated carbon was reasonably fitted with the intraparticle diffusion model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号