首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a quantum dot attached to leads in the Coulomb blockade regime that has a spin 1 / 2 ground state. We show that, by applying an ESR field to the dot spin, the stationary current in the sequential tunneling regime exhibits a new resonance peak whose linewidth is determined by the single spin decoherence time T2. The Rabi oscillations of the dot spin are shown to induce coherent current oscillations from which T2 can be deduced in the time domain. We describe a spin inverter which can be used to pump current through a double dot via spin flips generated by ESR.  相似文献   

2.
Exciton spin relaxation at low temperatures in InAlAs–InGaAs asymmetric double quantum dots embedded in AlGaAs layers has been investigated as a function of the barrier thickness by the time-resolved photoluminescence measurements. With decreasing the thickness of the AlGaAs layer between the dots, the spin relaxation time change from 3 ns to less than 500 ps. The reduction in the spin relaxation time was considered to originate from the spin-flip tunneling between the ground state in InAlAs dot and the excited states in InGaAs dot, and the resultant tunneling leads to the spin depolarization of the ground state in InGaAs dot.  相似文献   

3.
We investigate the effects induced by ferromagnetic contacts attached to a serial double quantum dot. Spin polarization generates effective magnetic fields and suppresses the Kondo effect in each dot. The superexchange interaction J(AFM), tuned by the interdot tunneling rate t, can be used to compensate the effective fields and restore the Kondo resonance when the contact polarizations are aligned. As a consequence, the direction of the spin conductance can be controlled and even reversed using electrostatic gates alone. Our results demonstrate a new approach for controlling spin-dependent transport in carbon nanotube double dot devices.  相似文献   

4.
We study the spin-polarized transport and Fano resonance in an Aharonov-Bohm (AB) interferometer with an embedded quantum dot, where the dot is irradiated by continuous circularly polarized light. Compared with the conventional Fano form, the resonance line shape is found to be deformed by the interplay between the external irradiation and the Coulomb repulsion. The Fano resonance peaks are split due to the shift of the effective energy level in the dot by Rabi oscillation of electron-heavy hole pairs. The direction and magnitude of spin current polarization can be modulated by the device parameters. Furthermore, the direct tunneling between two leads can induce a sharp sign reversal of spin polarization, the system thus operates as a rectifier for spin current polarization.  相似文献   

5.
Using the Keldysh nonequilibrium Green function method, we theoretically investigate the electron transport properties of a quantum dot coupled to two ferromagnetic electrodes, with inelastic electron-phonon interaction and spin flip scattering present in the quantum dot. It is found that the electron-phonon interaction reduces the current, induces new satellite polaronic peaks in the differential conductance spectrum, and at the same time leads to oscillatory tunneling magnetoresistance effect. Spin flip scattering suppresses the zero-bias conductance peak and splits it into two, with different behaviors for parallel and anti-parallel magnetic configuration of the two electrodes. Consequently, a negative tunneling magnetoresistance effect may occur in the resonant tunneling region, with increasing spin flip scattering rate.  相似文献   

6.
吴绍全  方栋开  赵国平 《物理学报》2015,64(10):107201-107201
从理论上研究了平行双量子点系统中的电子关联效应对该系统磁输运性质的影响. 基于广义主方程方法, 计算了通过此系统的电流、微分电导和隧穿磁阻. 计算结果表明: 电子自旋关联效应可以促发一个很大的隧穿磁阻, 而电子库仑关联效应不仅可以压制电子自旋关联效应, 还可以导致负隧穿磁阻和负微分电导的出现. 对相关的基本物理问题进行了讨论.  相似文献   

7.
We present a new device which consists of a molecular quantum dot (MQD) attached to a normal-metal, two ferromagnetic (FM), and a superconducting leads. The spin-related Andreev reflection (AR) current and the spin-dependent single-particle tunneling current through the normal-metal terminal are obtained, and it is found that the spin current exhibits the transistor-like behavior. The joint effects of the coherent spin flip and the angle between magnetic moments of the two FM leads on the spin current are also studied, these results provide the possibility to manipulate the spin current with the system parameters.  相似文献   

8.
We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for the use of graphene for spin-based logic and information storage applications.  相似文献   

9.
By means of a diagram technique for Hubbard operators, we show the existence of a spin-dependent renormalization of the localized levels in an interacting region, e.g., quantum dot, modeled by the Anderson Hamiltonian with two conduction bands. It is shown that the renormalization of the levels with a given spin direction is due to kinematic interactions with the conduction subbands of the opposite spin. The consequence of this dressing of the localized levels is a drastically decreased tunneling current for ferromagnetically ordered leads compared to that of paramagnetically ordered leads. Furthermore, the studied system shows a spin-dependent resonant tunneling behavior for ferromagnetically ordered leads.  相似文献   

10.
We demonstrate the effect of single-electron tunneling (SET) through a carbon nanotube quantum dot on its nanomechanical motion. We find that the frequency response and the dissipation of the nanoelectromechanical system to SET strongly depends on the electronic environment of the quantum dot, in particular, on the total dot capacitance and the tunnel coupling to the metal contacts. Our findings suggest that one could achieve quality factors of 10(6) or higher by choosing appropriate gate dielectrics and/or by improving the tunnel coupling to the leads.  相似文献   

11.
Electron tunneling through a single discrete level of a quantum dot, coupled to two ferromagnetic leads, is studied theoretically in the sequential tunneling regime. Electron correlations and spin relaxation processes on the dot are taken into account. It is shown that strong Coulomb correlations can enhance tunnel magnetoresistance in a certain bias range. The effect, however, is suppressed by spin-flip processes.  相似文献   

12.
周运清  孔令民  王瑞  张存喜 《物理学报》2011,60(7):77202-077202
利用演化算符的方法,研究了量子点体系中的电流以及自旋流,该体系中量子点和左右磁性电极耦合并且受到微波作用,且两电极之间有直接隧穿,得到了体系电流的解析表达式.发现对于无直接隧穿和零偏压情况,无论对称结构还是非对称结构,电流和自旋流总为零.对于直接隧穿和零偏压情况,对于两边为非对称结构,微波场辐射在量子点上可以导致自旋流而非零的总电流,给出了平行和反平行磁构型下的结果并进行了讨论;对于两边为对称结构结构,平行磁构型下,量子点上加微波场时自旋流和总电流均为零;在反平行磁构型下,量子点上加微波场可以导致自旋流而 关键词: 微波场 直接隧穿 量子点 泵流  相似文献   

13.
牛鹏斌  王强  聂一行 《中国物理 B》2013,22(2):27307-027307
The transport properties of an artificial single-molecule magnet based on a CdTe quantum dot doped with a single Mn+2 ion(S=5/2) are investigated by the non-equilibrium Green function method.We consider a minimal model where the Mn-hole exchange coupling is strongly anisotropic so that spin-flip is suppressed and the impurity spin S and a hole spin s entering the quantum dot are coupled into spin pair states with(2S+1) sublevels.In the sequential tunneling regime,the differential conductance exhibits(2S+1) possible peaks,corresponding to resonance tunneling via(2S+1) sublevels.At low temperature,Kondo physics dominates transport and(2S+1) Kondo peaks occur in the local density of states and conductance.These peaks originate from the spin-singlet state formed by the holes in the leads and on the dot via higher-order processes and are related to the parallel and antiparallel spin pair states.  相似文献   

14.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

15.
We report on experiments of the magnetotransport properties of GaAs-AlGaAs lateral quantum dots. At high magnetic fields for a 1 μm square dot structure, current flow occurred via edge states and, with the point contacts adjusted to allow transmission of one or more edge states, a strong backscattering resonance followed by short period oscillations were observed in the magnetoresistance, as B increased. At higher fields for a 2 μm dot, we observe a rapid rise in the magnetoresistance associated with the depopulation of the point contacts and the isolation of the dot from the leads. At still higher fields there occur periodic oscillations whose period was two orders of magnitude larger than would result from interference, or Aharonov-Bohm type effects.We analyze these phenomena using self-consistent electronic structure calculations for our devices. In particular, we show that the evolution of the terrace like structure of the potential profile profoundly affects the single particle spectrum within the dot when several Landau levels are occupied. For the large dot device, we expect that in the high field regime with the dot isolated from the leads, only a single Landau level is occupied in both the dot and the 2DEG region. In this regime, tunneling into and out of the dot is regulated by charging effects. We have introduced a "magneto-Coulomb oscillations" explanation of the periodic resonances that are observed.  相似文献   

16.
We investigate the nonequilibrium transport properties of a quantum dot when spin flip processes compete with the formation of a Kondo resonance in the presence of ferromagnetic leads. Based upon the Anderson Hamiltonian in the strongly interacting limit, we predict a splitting of the differential conductance when the spin flip scattering amplitude is of the order of the Kondo temperature. We discuss how the relative orientation of the lead magnetizations strongly influences the electronic current and the shot noise in a nontrivial way. Furthermore, we find that the zero-bias tunneling magnetoresistance becomes negative with increasing spin flip scattering amplitude.  相似文献   

17.
We find that Kondo resonant conductance can occur in a quantum dot in the Coulomb blockade regime with an even number of electrons N. The contacts are attached to the dot in a pillar configuration, and a magnetic field B( perpendicular) along the axis is applied. B( perpendicular) lifts the spin degeneracy of the dot energies. Usually, this prevents the system from developing the Kondo effect. Tuning B( perpendicular) to the value B(*) where levels with different total spin cross restores both the degeneracy and the Kondo effect. We analyze a dot charged with N = 2 electrons. Coupling to the contacts is antiferromagnetic due to a spin selection rule and, in the Kondo state, the charge is unchanged while the total spin on the dot is S = 1/2.  相似文献   

18.
The cotunneling current through a two-level quantum dot weakly coupled to ferromagnetic leads is studied in the Coulomb blockade regime. The cotunneling current is calculated analytically under simple but realistic assumptions as follows: (i)?the quantum dot is described by the universal Hamiltonian, (ii)?it is doubly occupied, and (iii)?it displays a fast spin relaxation. We find that the dependence of the differential conductance on the bias voltage is significantly affected by the exchange interaction on the quantum dot. In particular, for antiparallel magnetic configurations in the leads, the exchange interaction results in the appearance of interference-type contributions from the inelastic processes to the cotunneling current. Such dependence of the cotunneling current on the tunneling amplitude phases should also occur in multi-level quantum dots weakly coupled to ferromagnetic leads near the mesoscopic Stoner instabilities.  相似文献   

19.
The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio.  相似文献   

20.
We present a feasibility study of the semiconductor tunneling nano-structure consisting of multiple layers of two semiconductors along with a quantum dot layer for potential application in a cellular automata logic module. The elementary logic cell of the proposed CA module consists of a couple of tunnel diodes connected in series through a quantum dot. The charge of the quantum dot is considered as a logic variable. The local interconnections of nano-cells are achieved via the in-plane tunneling in the quantum dot layer. On the basis of approximate tunneling characteristics, multiple associative states and state dynamics are simulated. There are two ultimate advantages of the proposed CA scheme: (i) potential realization of a number of logic functions in one module, and (ii) reduced number of cell contacts required for read-in and read-out procedures (only edge cells have individual contacts). Examples of image processing using different logic functions are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号