首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We recently proposed a second-order accurate ψ-v formulation of the steady-state Navier-Stokes (N-S) equations on compact Cartesian nonuniform grids. In the current work, we extend the ideas of the aforesaid formulation and propose a second-order spatially compact, implicit, stable ψ-v formulation for the unsteady incompressible N-S equations. Contrary to the existing ψ-v finite difference formulations which use grid transformation, the proposed scheme is developed for nonuniform Cartesian grids without transformation specifically designed for two-dimensional laminar flow past bluff bodies. It has been implemented on problems of internal flows inside curved regions as well as those involving fluid-embedded body interaction. However, the robustness of the scheme is highlighted by the accurate resolution of a host of complex flows past bluff bodies with different physical set-ups and boundary conditions. It was seen to handle problems involving both uniform and accelerated flows across a wide range of structures of varied shape, namely, a flat plate, a circular cylinder, inclined square cylinder, and a wedge in channel hinged to the wall. Apart from elegantly capturing all the details of the shedded vortex structures under different circumstances, the scheme was also able to handle both Dirichlet and Neumann boundary with equal ease. In all the cases, our results are found to be extremely close to the available numerical and experimental results.  相似文献   

2.
This paper presents the results of a comprehensive numerical study to analyze conjugate, turbulent mixed convection heat transfer from a vertical channel with four heat sources, uniformly flush-mounted to one of the channel walls. The results are presented to study the effect of various parameters like thermal conductivity of wall material (k s), thermal conductivity of flush-mounted discrete heat source (k c), Reynolds number of fluid flow (Re s), modified Richardson number (Ri +) and aspect ratio (AR) of the channel. The standard k-ε turbulence model, modified by including buoyancy effects with physical boundary conditions, i.e. without wall functions, has been used for the analysis. Semi-staggered, non-uniform grids are used to discretise the two dimensional governing equations, using finite volume method. A correlation, encompassing a wide range of parameters, is developed for the non-dimensional maximum temperature (T *) using the asymptotic computational fluid dynamics (ACFD) technique.  相似文献   

3.
A Cartesian cut cell solver with solution‐based adaptive mesh refinement is developed for simulating viscous, incompressible flows with arbitrary complex geometries. The cut cells are automatically generated using Volume CAD (VCAD), a framework for storing geometric and material attribute data. Unlike earlier cut cell methods, this solver organizes the cutting patterns into only six categories and further subdivides the resulting pentagon into two quadrilaterals, such that mesh data can be stored by uniform data structure and the post‐processing of flow data can be handled conveniently. A novel method is proposed to treat minuscule cut cells without the process of cell merging. A collocated finite volume method, which can be used even when multiple cell shapes and orthogonal and non‐orthogonal grids exist in the decomposition, is employed to discretize the Navier–Stokes equations. A modified SIMPLE‐based smoothing pressure correction scheme is applied in this cut cell method to suppress checkerboard pressure oscillations caused by collocated arrangement. The solver is first used to simulate a channel flow to demonstrate its calculation accuracy expressed with L1 and L norm errors and then the method is utilized to solve three benchmark problems of flow and heat transfer within irregular domains to verify its feasibility, efficiency, accuracy and potential in engineering applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper an algebraic model from the constitutive equations of the subgrid stresses has been developed. This model has an additional term in comparison with the mixed model, which represents the backscatter of energy explicitly. The proposed model thus provides independent modelling of the different energy transfer mechanisms, thereby capturing the effect of subgrid scales more accurately. The model is also found to depict the flow anisotropy better than the linear and mixed models. The energy transfer capability of the model is analysed for the isotropic decay and the forced isotropic turbulence. The turbulent plane channel flow simulation is performed over three Reynolds numbers, Reτ=180, 395 and 590, and the results are compared with that of the dynamic model, Smagorinsky model, and the DNS data. Both the algebraic and dynamic models are in good agreement with the DNS data for the mean flow quantities. However, the algebraic model is found to be more accurate for the turbulence intensities and the higher‐order statistics. The capability of the algebraic model to represent backscatter is also demonstrated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The dynamic model for large-eddy simulation (LES) of turbulent flows requires test filtering the resolved velocity fields in order to determine model coefficients. However, test filtering is costly to perform in LES of complex geometry flows, especially on unstructured grids. The objective of this work is to develop and test an approximate but less costly dynamic procedure which does not require test filtering. The proposed method is based on Taylor series expansions of the resolved velocity fields. Accuracy is governed by the derivative schemes used in the calculation and the number of terms considered in the approximation to the test filtering operator. The expansion is developed up to fourth order, and results are tested a priori based on direct numerical simulation data of forced isotropic turbulence in the context of the dynamic Smagorinsky model. The tests compare the dynamic Smagorinsky coefficient obtained from filtering with those obtained from application of the Taylor series expansion. They show that the expansion up to second order provides a reasonable approximation to the true dynamic coefficient (with errors on the order of about 5% for c s 2), but that including higher-order terms does not necessarily lead to improvements in the results due to inherent limitations in accurately evaluating high-order derivatives. A posteriori tests using the Taylor series approximation in LES of forced isotropic turbulence and channel flow confirm that the Taylor series approximation yields accurate results for the dynamic coefficient. Moreover, the simulations are stable and yield accurate resolved velocity statistics. Received 20 February 2001 and accepted 24 July 2001  相似文献   

6.
Static model coefficients for an algebraic subgrid stress (SGS) model are determined using a dynamic approach, based on results from simulations of isotropic decaying turbulence. The study was motivated by the discrepancies in energy transfer predictions using the previously documented coefficients (Bhushan and Warsi, Int. J. Numer. Meth. Fluids 2005; 49 : 489–519). The discrepancies are identified to be due to inconsistent filter functions used in the analytic estimates and the simulations. The study emphasizes that SGS model development should use filter functions compatible with those inherent in CFD application solvers. The dynamic approach predicts consistent model and transfer coefficients for different grid resolutions and is judged to be a reliable basis for model coefficient adjustments. The predicted Leonard's stress coefficient and associated energy transfer coefficients agree very well with the analytic estimates using a Gaussian/cutoff combination filter. This suggests that the modeling of Leonard's stress term using a truncated Taylor series expansion is robust and may not benefit significantly from dynamic modeling. Validation simulations were performed for turbulent channel flow at Reτ = 180 and 590. The dynamic approach was found to be reliable only for the lower log‐layer of the Reτ = 590 case, where the scale invariance condition was satisfied. Nonetheless, in this narrow range, the model and transfer coefficients compare well with the isotropic case. The static coefficient algebraic model with new adjusted coefficients shows improved predictions compared with the previous coefficients, for both isotropic decaying turbulence and channel flow cases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A new subgrid scale (SGS) modelling concept for large-eddy simulation (LES) of incompressible flow is proposed based on the three-dimensional spatial velocity increment δ u i . The new model is inspired by the structure function formulation developed by Métais and Lesieur [39] and applied in the context of the scale similarity type formulation. First, the similarity between the SGS stress tensor τ ij and the velocity increment tensor Q ij = δ u i δ u j is analyzed analytically and numerically using a priori tests of fully developed pipe flow at Re τ = 180. Both forward and backward energy transfers between resolved and unresolved scales of the flow are well predicted with a SGS model based on Q ij . Secondly, a posteriori tests are performed for two families of turbulent shear flows. LES of fully developed pipe flow up to Re τ = 520 and LES of round turbulent jet at Re D = 25000 carried out with a dynamic version of the model provide promising results that confirm the power of this approach for wall-bounded and free shear flows.  相似文献   

8.
We propose and analyze a wall model based on the turbulent boundary layer equations (TBLE) for implicit large-eddy simulation (LES) of high Reynolds number wall-bounded flows in conjunction with a conservative immersed-interface method for mapping complex boundaries onto Cartesian meshes. Both implicit subgrid-scale model and immersed-interface treatment of boundaries offer high computational efficiency for complex flow configurations. The wall model operates directly on the Cartesian computational mesh without the need for a dual boundary-conforming mesh. The combination of wall model and implicit LES is investigated in detail for turbulent channel flow at friction Reynolds numbers from Re τ  = 395 up to Re τ =100,000 on very coarse meshes. The TBLE wall model with implicit LES gives results of better quality than current explicit LES based on eddy viscosity subgrid-scale models with similar wall models. A straightforward formulation of the wall model performs well at moderately large Reynolds numbers. A logarithmic-layer mismatch, observed only at very large Reynolds numbers, is removed by introducing a new structure-based damping function. The performance of the overall approach is assessed for two generic configurations with flow separation: the backward-facing step at Re h = 5,000 and the periodic hill at Re H = 10,595 and Re H = 37,000 on very coarse meshes. The results confirm the observations made for the channel flow with respect to the good prediction quality and indicate that the combination of implicit LES, immersed-interface method, and TBLE-based wall modeling is a viable approach for simulating complex aerodynamic flows at high Reynolds numbers. They also reflect the limitations of TBLE-based wall models.  相似文献   

9.
A high‐order accurate solution method for complex geometries is developed for two‐dimensional flows using the stream function–vorticity formulation. High‐order accurate spectrally optimized compact schemes along with appropriate boundary schemes are used for spatial discretization while a two‐level backward Euler implicit scheme is used for the time integration. The linear system of equations for stream function and vorticity are solved by an inner iteration while contravariant velocities constitute outer iterations. The effect of curvilinear grids on the solution accuracy is studied. The method is used to compute Cartesian and inclined driven cavity, flow in a triangular cavity and viscous flow in constricted channel. Benchmark‐like accuracy is obtained in all the problems with fewer grid points compared to reported studies. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Large-eddy simulations (LES) of a planar, asymmetric diffuser flow have been performed. The diverging angle of the inclined wall of the diffuser is chosen as 8.5°, a case for which recent experimental data are available. Reasonable agreement between the LES and the experiments is obtained. The numerical method is further validated for diffuser flow with the diffuser wall inclined at a diverging angle of 10°, which has served as a test case for a number of experimental as well as numerical studies in the literature (LES, RANS). For the present results, the subgrid-scale stresses have been closed using the dynamic Smagorinsky model. A resolution study has been performed, highlighting the disparity of the relevant temporal and spatial scales and thus the sensitivity of the simulation results to the specific numerical grids used. The effect of different Reynolds numbers of the inflowing, fully turbulent channel flow has been studied, in particular, Re b  = 4,500, Re b  = 9,000 and Re b  = 20,000 with Re b being the Reynolds number based on the bulk velocity and channel half width. The results consistently show that by increasing the Reynolds number a clear trend towards a larger separated region is evident; at least for the studied, comparably low Reynolds-number regime. It is further shown that the small separated region occurring at the diffuser throat shows the opposite behaviour as the main separation region, i.e. the flow is separating less with higher Re b . Moreover, the influence of the Reynolds number on the internal layer occurring at the non-inclined wall described in a recent study has also been assessed. It can be concluded that this region close to the upper, straight wall, is more distinct for larger Re b . Additionally, the influence of temporal correlations arising from the commonly used periodic turbulent channel flow as inflow condition (similar to a precursor simulation) for the diffuser is assessed.  相似文献   

11.
Direct numerical simulation (DNS) has been performed to study the channel flow over a backward‐facing step at a Reynolds number Reb=5600 based on the step height h and the inflow bulk velocity Ub. A dynamic method has been used in order to generate realistic turbulent inflow conditions. The results upstream of the step compared well with the fully developed channel flow. Downstream of the step our results show excellent agreement with experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A recently developed asymmetric implicit fifth‐order scheme with acoustic upwinding for the spatial discretization for the characteristic waves is applied to the fully compressible, viscous and non‐stationary Navier–Stokes equations for sub‐ and super‐sonic, mildly turbulent, channel flow (Reτ=360). For a Mach number of 0.1, results are presented for uniform (323, 643 and 1283) and non‐uniform (expanding wall‐normal, 323 and 643) grids and compared to the (incompressible) reference solution found in (J. Fluid. Mech. 1987; 177 :133–166). The results for uniform grids on 1283 and 643 nodes show high resemblance with the reference solution. Expanding grids are applied on 643‐ and 323‐node grids. The capability of the proposed technique to solve compressible flow is first demonstrated by increasing the Mach number to 0.3, 0.6 and 0.9 for isentropic flow on the uniform 643‐grid. Next, the flow speed is increased to Ma=2. The results for the isothermal‐wall supersonic flows give very good agreement with known literature results. The velocity field, the temperature and their fluctuations are well resolved. This means that in all presented (sub‐ and super‐sonic) cases, the combination of acoustic upwinding and the asymmetric high‐order scheme provides sufficient high wave‐number damping and low wave‐number accuracy to give numerically stable and accurate results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

A flux formulation using a projected 2D Roe Riemann solver on unstructured grids (R2D Solver) is introduced for solving the Navier-Stokes equations and is applied to calculations of axisymmetric laminar near-wake flows behind a spherical-conical body. The numerical framework was first developed by P. L. Roe et al, in the late eighties. They looked for unsteady solutions to Euler's equations using a rather simple but exact three state linearization on triangular grids and decomposing the solution using some effective wave models. Our approach differs from their techniques by constructing a second order accurate and conservative flux functions under the well-known classical finite volume formulation. However, our Riemann Solver is obtained by a suitable linearization procedure upon all three prescribed nodal values given on each triangle. Our numerical method is applied to a Mach 4.3 flow problem for refined unstructured triangular grid behind the body. Numerical results indicate that our technique is stable, accurate and converges successfully to a stationary solution as the cell size is reduced from the coarse lo the finest grid.  相似文献   

14.
In this work, we propose a formulation to evaluate aerodynamic forces for flow solutions based on Cartesian grids, penalisation and level set functions. The formulation enables the evaluation of forces on closed bodies moving at different velocities. The use of Cartesian grids bypasses the meshing issues, and penalisation is an efficient alternative to explicitly impose boundary conditions so that the body fitted meshes can be avoided. Penalisation enables ice shedding simulations that take into account ice piece effects on the flow. Level set functions describe the geometry in a non-parametric way so that geometrical and topological changes resulting from physics, and particularly shed ice pieces, are straightforward to follow. The results obtained with the present force formulation are validated against other numerical formulations for circular and square cylinder in laminar flow. The capabilities of the proposed formulation are demonstrated on ice trajectory calculations for highly separated flow behind a bluff body, representative of inflight aircraft ice shedding.  相似文献   

15.
Astract The present study is a contribution to the analysis of wall-bounded compressible flows, including a special focus on wall modeling for compressible turbulent boundary layer in a plane channel. large eddy simulation (LES) of fully developed isothermal channel flows at Re = 3,000 and Re = 4,880 with a sufficient mesh refinement at the wall are carried out in the Mach number range 0.3 ≤ M ≤ 3 for two different source term formulations: first the classical extension of the incompressible configuration by Coleman et al. (J. Fluid Mech. 305:159–183, 1995), second a formulation presently derived to model both streamwise pressure drop and streamwise internal energy loss in a spatially developed compressible channel flow. It is shown that the second formulation is consistent with the spatial problem and yields a much stronger cooling effect at the wall than the classical formulation. Based on the present LES data bank, compressibility and low Reynolds number effects are analysed in terms of coherent structure and statistics. A study of the universality of the structure of the turbulence in non-hypersonic compressible boundary layers (M≤5) is performed in reference to Bradshaw (Annu. Rev. Fluid. Mech. 9:33–54, 1977). An improvement of the van Driest transformation is proposed; it accounts for both density and viscosity changes in the wall layer. Consistently, a new integral wall scaling (y c+) which accounts for strong temperature gradients at the wall is developed for the present non-adiabatic compressible flow. The modification of the strong Reynolds analogy proposed by Huang et al. (J. Fluid Mech. 305:185–218, 1995) to model the correlation between velocity and temperature for non-adiabatic wall layers is assessed on the basis of a Crocco–Busemann relation specific to channel flow. The key role of the mixing turbulent Prandtl number Pr m is pointed out. Results show very good agreement for both source formulations although each of them involve a very different amount of energy transfer at the wall. The present work was performed within the framework of the French–German research initiative “large eddy simulation of complex flows’ (UR 507). The computing resources were provided by IDRIS-France. The authors gratefully acknowledge the financial support from the Centre National de la Recherche Scientifique (CNRS), the Centre d’été Mathématique de Recherche Avancée en Calcul Scientifique (CEMRACS) and the Direction Générale de l’Armement (DGA/D4S).  相似文献   

16.
This paper presents a three‐dimensional unstructured Cartesian grid model for simulating shallow water hydrodynamics in lakes, rivers, estuaries, and coastal waters. It is a flux‐based finite difference model that uses a cut‐cell approach to fit the bottom topography and shorelines and, at the same time, has the flexibility of discretizing complex geometries with Cartesian grids that can be arbitrarily downsized in the two horizontal directions simultaneously. Because of the use of Cartesian grids, the grid generation is very simple and does not suffer the grid generation headache often seen in many other unstructured models, as the unstructured Cartesian grid model does not have any requirements on the orthogonality of the grids. The newly developed unstructured Cartesian grid model was validated against analytical solutions for a three‐dimensional seiching case in a rectangular basin, before it was compared with another three‐dimensional model named LESS3D for circulations and salinity transport processes in an idealized embayment that is driven by tides and freshwater inflows. Model tests show that the numerical procedure used in the unstructured Cartesian grid model is robust. Similar to other unstructured models, a variable grid size has resulted in a smaller number of grids required for a reasonable model simulation, which in turn reduces the CPU time used in the model run. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The paper considers the application of the Craft et al. [6]non-linear eddy-viscosity model to separating and impinging flows. The original formulation was found to lead to numerical instabilities when applied to flow separating from a sharp corner. An alternative formulation for the variation of the turbulent viscosity parameterc μ with strain rate is proposed which, together with a proposed improvement in the implementation of the non-linear model, removes this weakness. It does, however, lead to worse predictions in an impinging jet, and a further modification in the expression for c μ is proposed, which both retains the stability enhancements and improves the prediction of the stagnating flow. The Yap [24] algebraic length-scale correction term, included in the original model, is replaced with a differential form, developed from that proposed by Iacovides and Raisee [10]. This removes the need to prescribe the wall-distance, and is shown to lead to superior heat-transfer predictions in both an abrupt pipe flow and the axisymmetric impinging jet. One predictive weakness still, however, remains. The proposed model, in common with other near-wall models tested for the abrupt pipe expansion, returns a stronger dependence of Nusselt number on the Reynolds number than that indicated by the experimental data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
To resolve the characteristics of a highly complex flow, a lattice Boltzmann method with an extrapolation boundary technique was used in aneurysms with and without transverse objects on the upper wall, and results were compared with the non‐stented aneurysm. The extrapolation boundary concept allows the use of Cartesian grids even when the boundaries do not conform to Cartesian coordinates. To ease the code development and facilitate the incorporation of new physics, a new scientific programming strategy based on object‐oriented concepts was developed. The reduced flow, smaller vorticity magnitude and wall shear stress, and smaller du/dy near the dome of the aneurysm were observed when the proposed stent obstacles were used. The height of the stent obstacles was more effective to reduce the vorticity near the dome of the aneurysm than the width of the stent. The rectangular stent with 20% height‐of‐vessel radius was observed to be optimal and decreased the magnitude of the vorticity by 21% near the dome of the aneurysm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A transport model for hybrid RANS/LES simulation of passive scalars is proposed. It invokes a dynamically computed subgrid Prandtl number. The method is based on computing test-filter fluxes. The formulation proves to be especially effective on coarse grids, as occur in DES. After testing it in a wall resolved LES, the present formulation is applied to the Adaptive DDES model of Yin et al. (Phys. Fluids 27, 025105 2015). It is validated by turbulent channel flow and turbulent boundary layer computations.  相似文献   

20.
A nested multi‐grid solution algorithm has been developed for an adaptive Cartesian/Quad grid viscous flow solver. Body‐fitted adaptive Quad (quadrilateral) grids are generated around solid bodies through ‘surface extrusion’. The Quad grids are then overlapped with an adaptive Cartesian grid. Quadtree data structures are employed to record both the Quad and Cartesian grids. The Cartesian grid is generated through recursive sub‐division of a single root, whereas the Quad grids start from multiple roots—a forest of Quadtrees, representing the coarsest possible Quad grids. Cell‐cutting is performed at the Cartesian/Quad grid interface to merge the Cartesian and Quad grids into a single unstructured grid with arbitrary cell topologies (i.e., arbitrary polygons). Because of the hierarchical nature of the data structure, many levels of coarse grids have already been built in. The coarsening of the unstructured grid is based on the Quadtree data structure through reverse tree traversal. Issues arising from grid coarsening are discussed and solutions are developed. The flow solver is based on a cell‐centered finite volume discretization, Roe's flux splitting, a least‐squares linear reconstruction, and a differentiable limiter developed by Venkatakrishnan in a modified form. A local time stepping scheme is used to handle very small cut cells produced in cell‐cutting. Several cycling strategies, such as the saw‐tooth, W‐ and V‐cycles, have been studies. The V‐cycle has been found to be the most efficient. In general, the multi‐grid solution algorithm has been shown to greatly speed up convergence to steady state—by one to two orders. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号