首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simultaneous LEED and AES are used to follow early stages of oxidation of monocrystalline FeCr(100) and (110) between 700 and 900 K in the oxygen pressure range 10?9–10?6 Torr. A chromium-rich oxide region at the alloy/oxide interface is observed, which exhibits different surface structures on oxidized FeCr(100) and FeCr(110). The chromium concentration in this initially formed oxide film is found to be enhanced by low oxygen pressures or high temperatures. During further oxidation different behaviours are observed on FeCr(100) and FeCr(110), which are explained by assuming different ion permeabilities through the initial chromium rich oxide regions on the two surface planes. On FeCr(110) surfaces oxidation is initiated on chromium enriched (100) facets at 800 K or below. At 900 K a film consisting of rhombohedral Cr2O3 or (Fe, Cr)2O3 is epitaxially growing with its (001) plane parallel to the alloy (110) face. On FeCr(100) surfaces the chromium rich oxide region next to the substrate is of fcc type. As soon as the diffusion of iron from the alloy to the gas/oxide interface is observable, a spinel type oxide is formed and connected with the location of iron in tetrahedral lattice sites. Closer to the fcc lattice the spinel oxide consists of FeCr2O4 or a solid solution of FeCr2O4 and Fe3O4 whereas next to the gas phase the oxide is pure Fe3O4.  相似文献   

2.
Cosegregation is known to cause the formation of two-dimensional chemical compounds (surface compounds) which can be epitaxed to substrate surfaces of a suitable structure. In the present work the cosegregation-induced formation of the CrN surface compound on nitrided Fe–15%Cr–N(100) single crystal surfaces was studied by means of Auger electron spectroscopy and low-energy electron diffraction. Intensity versus energy spectra (I(E)) were measured and analysed fully dynamically to investigate the structural details of the CrN surface compound. It is found that nitrogen is segregated to the surface forming the sample's top layer and substantial amounts of chromium are cosegregated with nitrogen. Nitrogen atoms reside in four-fold symmetric hollow sites about 0.1 Å above the metallic substrate. There is a huge relative expansion of the distance between the first and second metal atom layers (Δd12/d0≈26%), while the distances between deeper layers are almost bulk-like. The small distance between the nitrogen and the top metal layer as well as the huge layer expansion Δd12/d0 are in agreement with results found for N/Cr(100).  相似文献   

3.
D.Wayne Goodman 《Surface science》1982,123(1):L679-L685
Single crystal catalysts have been used to investigate ethane hydrogenolysis. The apparatus used in these studies allows for catalyst preparation and surface characterization in ultrahigh vacuum (UHV) with an in vacuo transfer to a second UHV chamber designed for high pressure kinetic studies. Kinetic measurements on single crystals of nickel show the hydrogenolysis of ethane to be “structure sensitive”. Absolute rate and activation energy differences are observed over different facets of nickel. The (100) surface is observed to be significantly more active for this reaction than the (111) surface.  相似文献   

4.
The oxidation of the W(1 0 0) surface at elevated temperatures has been studied using room temperature STM and LEED. High exposure of the clean surface to O2 at 1500 K followed by flash-annealing to 2300 K in UHV results in the formation of a novel p(3 × 1) reconstruction, which is imaged by STM as a missing-row structure on the surface. Upon further annealing in UHV, this surface develops a floreted LEED pattern characteristic of twinned microdomains of monoclinic WOx, while maintaining the p(3 × 1) missing-row structure. Atomically resolved STM images of this surface show a complex domain structure with single and double W〈0 1 0〉 rows coexisting on the surface in different domains.  相似文献   

5.
Carbon films with thicknesses up to 10 monolayers (ML) have been grown on Si(100) substrates by means of laser ablation of graphite under ultra-high vacuum (UHV) conditions. The early stages of the growth have been characterized by Auger-electron (AES), electron-energy-loss (EELS) and ion-scattering (ISS) spectroscopies. EELS and AES can be used to qualitatively distinguish between the graphitic or diamond-like character of the films. The effect of submonolayer coverages on the surface electronic density of the silicon substrate has also been investigated. Carbon does not diffuse into silicon for room temperature depositions. Annealing at 950 °C causes graphitization and the formation of silicon carbide together with an intermixing of C and Si.  相似文献   

6.
Simultaneous LEED and AES observations have been used to study the initial stages of oxidation of the Fe(110) and Fe(100) single crystal surfaces at 300 K and 400 K and of a clean Fe polycrystal at 300 K. Accurate surface lattice spacings of the precursory oxide structures have been measured and attempts have been made to quantitatively evaluate the corresponding surface oxygen density.On the (110) single crystal surface the final structure is FeO-like with a lattice spacing 4% larger than that of bulk FeO. The transition to the FeO-like structure starts with a surface lattice expansion in the [11̄0] direction followed by an expansion in the [001] direction in order to accommodate the (111) face of the FeO-like structure. On the (100) single crystal face the oxygen and iron form an fcc (100) face which initially contracts and then expands with increasing oxygen doses. The structure formed at 300 K is spinel-like but heat treatment causes a transition to FeO(100).The changes of the surface unit cell dimensions are interpreted as the result of an interaction between adsorbate and substrate. This interaction is strongest in a direction parallel to the close packed rows of the substrate, making the corresponding periodicity of the adsorbate more resistant to lattice changes.In the case of the polycrystal a hexagonal structure was observed after oxygen adsorption with no simple relation to the oxide structures observed on the single crystals. The initial sticking coefficients in the interval 0–10?5 torr sec ranged from 0.07 to 0.36 depending on temperature and crystal face observed. The latter dependence is explained in terms of the surface structure.  相似文献   

7.
纳米铁广泛用于水中重金属离子的去除,但由于其易团聚的特性,在地下水中迁移性差,使其修复效果降低。氧化石墨烯具有吸附重金属的作用,但由于其表面带有负电荷,对带负电的高价铬(Cr_2O_7~(2-),CrO_4~(2-))吸附作用较弱。以氧化石墨烯(GO)为载体,采用液相还原法制备的氧化石墨烯负载纳米铁(rGO-nZⅥ),在改善纳米铁的分散性的同时,利用nZⅥ将带负电的高价铬(Cr_2O_7~(2-),CrO_4~(2-))还原为带正电的三价铬(Cr~(3+)),增强了氧化石墨烯对其吸附的性能。利用XRD和TEM对制备的rGO-nZⅥ进行表征,表明制备的rGO-nZⅥ近似球形,粒径为20~100nm;零价铁负载在GO表面。应用rGO-nZⅥ处理Cr(Ⅵ)污染的地下水,Cr(Ⅵ)的去除效率可达到100%,材料的最佳投加量与Cr(Ⅵ)浓度呈线性正相关。采用X光电子能谱(XPS)分析铬和铁的存在形态,并通过XPAPEAK41分峰后证实,Cr(Ⅵ)首先被还原为Cr(Ⅲ),进而生成Cr(OH)3吸附到材料表面。由XPS图看出,经24h反应,69.8%的Cr(Ⅵ)转化为Cr(Ⅲ)吸附到材料表面,此时仍具有Fe0的峰,证实材料具有很强的还原吸附铬的能力,且仍具有缓慢释放电子的能力,有利于后续长时间的修复。该结果对于利用rGO-nZⅥ处理地下水Cr(Ⅵ)污染具有重要的理论意义和实用价值。  相似文献   

8.
Interfacial reactions of evaporated chromium with surface has been studied using Auger electron spectroscopy (AES). The results reveal that the interfacial region consists of a mixture, which is a double oxide of Cr and Al or two separated oxides. After annealing, the chromium oxide and the metallic Al produced by reduction of the Al3+ ions were easily detected by AES at the interface. We suggest that the interfacial reaction occurs mainly by the charge transfer from the 3d electrons of Cr atoms to O 2p orbitals of the Al2O3 substrate. The annealing at higher temperature (973 K) is favourable to promote the interfacial reaction between the surface oxygen and the initial few atomic monolayers of the deposited chromium. The results also showed that the change of the relative Auger peak-to-peak height (APPH(%)) of the Cr LMM group peaks can be used as an index to identify the oxidation states of chromium at the Cr/Al2O3 interface.  相似文献   

9.
A method is described for measuring local variations of the surface potential in one dimension on solid surfaces. The variations are determined by a contact potential difference (CPD) method utilizing a 6 μm thick wire as the vibrating reference electrode. The vibrating wire being placed at a distance of 15 μm above the surface can be moved under UHV conditions across the surface and the CPD variation is directly plotted on and XY-recorder. The spatial resolution amounts to about 50μm and the sensitivity for CPD changes is less than 20 mV. The method has been applied to studies of the surface diffusion of oxygen on a (110) tungsten single crystal plane.  相似文献   

10.
The initial stages of the oxidation of (110) and (100) chromium surfaces have been studied using low energy electron diffraction and Auger electron spectroscopy. The low energy Auger electron peaks were tentatively explained in terms of different chemical states. Thus, the clean chromium surface, the surface covered by chemisorbed oxygen and the chromium oxide surface could be associated with the occurrence of different peaks. The intermediate oxygen chemisorption structures observed at oxidation, have been characterized with respect to symmetry and accurate unit cell dimensions. Lattice parameters were found to range from those of the substrate chromium metal to those of chromium sesquioxide. On the (110) face, the lattice parameter change was observed to be largest in the [11̄0] direction. The observations are in fair agreement with current concepts of misfitting crystalline surface layers.  相似文献   

11.
For a program of surface and interface experiments with the PAC isotope100Pd, a procedure has been developed to chemically separate100Pd from irradiated rhodium and deposit it on surfaces by evaporation under UHV conditions. First results have been obtained for100Pd on an Ni(111) surface.  相似文献   

12.
Periodic surface profiles with amplitudes of ≦0.4 μm and periodicities of 4–20 μm were prepared on Ni(110), (100), and (111) single crystal surfaces. These crystals were annealed in ultra-high vacuum (UHV) at 1073–1327 K after they had been cleaned by Ar ion bombardment and investigated by Auger electron spectroscopy. The geometry of the profiles was studied in UHV by laser diffraction and outside the vacuum by interference microscopy. The profiles have sinusoidal shapes on Ni(110) but trapezoidal shapes on both the (100) and (111) surfaces. This type of faceting can be understood on the basis of the anisotropic surface energy of Ni, with cusps at the (100) and (111) orientations. Model calculations show in the case of anisotropic surface energy that periodic profiles develop facets which correspond to the low surface energy orientations (close-packed surfaces).  相似文献   

13.
The structure of multilayers of ultrathin scandium (Sc) and chromium (Cr) films has been characterized by means of transmission electron microscopy (TEM). Face centered cubic Sc was found both in magnetron sputtered thin Sc layers on Si(0 0 1) and in Cr/Sc multilayers for soft X-ray mirrors. The single Sc and Cr layers are polycrystalline with randomly oriented grains, while Sc and Cr within the Cr/Sc multilayer show a strong [0 0 1] texture in the deposition direction. From high-resolution images the orientation-relationship at the Cr/Sc interfaces could be deduced as: Sc[110]//Cr[100] and Sc[010]//Cr[110], which was confirmed by image simulations.  相似文献   

14.
Reactions on Cl-adsorbed Si(111) and Si(100) surfaces—(Cl/Si(111) and Cl/Si(100))—under heating in ultrahigh vacuum (UHV) and in a Cl2 atmosphere were studied. Auger electron spectroscopy (AES) and low-energy electron energy loss spectroscopy (LEELS) were used for examination of surface changes. Heating in UHV at 820°C for 30 s successfully removed almost all Cl atoms, both on Cl/Si(111) and Cl/Si(100). Variance in LEELS spectra shows that decomposition of SiClx (x > 1), a small amount of which was present on Cl/Si(111), occurs under heating on Si(111) both in UHV and in Cl2 and desorbs reaction products, leaving the Si---Cl bonds on the surfaces. Such Si---Cl bonds specific to those on Cl/Si(111) are formed also on Cl/Si(100) heated in C12 at 820°C. On Cl/Si(100) heated in C12, there are various surface changes: relaxation of the 2 × 1 structure remaining on the Cl/Si(100), desorption of reaction products, and formation of Si---Cl bonds specific to those on Cl/Si(111). The Si---Cl bonds, both on Cl/Si(111) and Cl/Si(100), decomposed under longer heating and under heating at higher temperatures in UHV.  相似文献   

15.
The mechanism of oxygenation of organic sulfide by oxo(salen)chromium(V) complexes has been studied experimentally and by the density functional theory (DFT) method. Spectral studies show DMSO ligands bind with the Cr center of oxidant and the adduct formed was responsible for the oxygenation reaction. The reaction was first order with respect to oxidant and substrate. Hammett plot shows the formation of positive charge over sulfur atom and the development of negative charge over the oxidant in the transition state (TS). For the substrate ρ values are in the range from ?1.5 to ?1.8. The geometry has been correctly predicted by the B3LYP function, and it gives better results for spin states, harmonic frequencies, and thermodynamic energies for the system. DFT results indicate the existence of oxo(salen)chromium(V) and Cr(III)–salen at doublet and quartet as ground state, respectively. Binding of donor ligand weakens the Cr? O bond. TS structures show an increase in the negative charge and spin density over Cr atom indicating the involvement of spin inversion and radical character. The low activation energy and high free energy change are responsible for the enhancement of the reaction rate and product yield in the presence of DMSO donor ligand, while the rebound mechanism and the direction of substrate approach perpendicular to the salen plane are responsible for their higher selectivity. From this combined study, a mechanism involving consecutive two‐electron transfer from the oxo(salen)chromium(V) ion to the electron‐rich sulfur atom is proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The growth and hydrogenation of ultra-thin magnesium overlayers have been investigated on a Mo(1 1 1) single crystal substrate. For increasing magnesium coverages we observe intermediate stages in the TPD and LEISS profiles, which illustrate the transition from one monolayer to multilayer growth. Hydrogen cannot be adsorbed on magnesium films under UHV conditions. However, when evaporating Mg in a hydrogen background, a hydrogen overlayer is seen to adsorb at the Mg surface, due to the catalytic interaction with the Mo(1 1 1) substrate and subsequent spill-over. We show that two monolayers of Mg are necessary to sustain this purely adsorbed state. Using predissociated hydrogen we show that the hydride formation is self-stabilizing and the hydride only decomposes at a temperature where a considerable desorption of magnesium occurs.  相似文献   

17.
Aligned three-dimensional single-crystal chromium nanostructures are fabricated onto a silicon substrate by thermal evaporation in a conventional thermal evaporator, where the incident angle of Cr vapor flux with respect to the substrate surface normal is fixed at 88°. The effects of the deposition time and incident angle on the morphology of the resulting nanostructures are investigated. The achieved Cr nanostructures are characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and surface area measurement. This study provides a convenient way to fabricate three-dimensional single-crystal Cr nanostructures, which is suitable for batch fabrication and mass production. Finally, the same technique is employed to fabricate the nanostructures of other metals such as Ag, Au, Pd, and Ni.  相似文献   

18.
The electronic properties of SrTiO3(100) surfaces after various treatments have been studied by electron energy loss spectroscopy and Auger electron spectroscopy. A stoichiometric surface without contamination can be obtained by annealing at 910 K under oxygen atmosphere of 5 × 10−5 Pa. The surface heated under ultrahigh vacuum (UHV) at 910 K exhibits a new surface state in the band gap region, which comes from oxygen vacancies at the top Ti-O2 layer. This state is also produced by electron irradiation or Ar-ion bombardment.  相似文献   

19.
Ultrathin SiO2 layers for potential applications in nano-scale electronic and photovoltaic devises were prepared by exposure to thermalized atomic oxygen under UHV conditions. Wet-chemical substrate pretreatment, layer deposition and annealing processes were applied to improve the electronic Si/SiO2 interface properties. This favourable effect of optimized wet-chemical pre-treatment can be preserved during the subsequent oxidation. The corresponding atomic-scale analysis of the electronic interface states after substrate pre-treatment and the subsequent silicon oxide layer formation is performed by field-modulated surface photovoltage (SPV), atomic force microscopy (AFM) and spectroscopic ellipsometry in the ultraviolet and visible region (UV-VIS-SE).  相似文献   

20.
The surface of 310 stainless steel (310SS) samples was investigated by X-ray photoelectron spectroscopy (XPS) after 500 h cyclic exposure to two carburizing atmospheres: CH4 (2%)–H2 (98%) at 800 °C, and CH4 (10%)–H2 (90%) at 1100 °C. The depth distribution of various elements in the surface region was obtained by XPS after successive cycles of argon etching. The microstructure of the alloy was observed by scanning electron microscopy (SEM) and the phases formed during the exposure were analyzed by X-ray diffraction (XRD). The results showed that the major phases that were formed within few micrometer depth during exposure at 800 °C include both iron and chromium carbides. (Mn, Cr) oxide was also formed as a result of the reaction with the residual oxygen of the atmosphere. A region of few microns width that was relatively depleted of chromium was formed under the surface as a result of the outwards diffusion of chromium. The exposure to the reducing atmosphere at 1100 °C led to the formation of various iron and chromium carbides. No oxide was formed during exposure. In all exposed samples, the surface was Cr enriched while nickel remained buried under the surface region that reacted with the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号