首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Sr(Ⅱ)的动力学,考察了搅拌转速、界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130r/min以下时,0.1mol/L TODGA/正十二烷萃取Sr(Ⅱ)的过程为扩散控制类型,在搅拌转速为150r/min以上时,则可能属于化学反应控制的动力学控制模式;(2) 求得了在(170±2)r/min、温度为(25±0.1)℃时0.1mol/L TODGA/正十二烷萃取Sr(Ⅱ)的初始速率方程: r0= ((dcorg(M)/dt) |t=0)=k• (S/V)c0.91aq,0(Sr)c0.73aq,0(HNO3)c0.87org,0 (TODGA) 在25℃下,求得表观萃取速率常数k=(22.5±2.5)×10-3mol-1.51•L1.51•min-1•cm;(3) 0.1 mol/L TODGA/正十二烷萃取Sr(Ⅱ)的初始速率随着温度的升高而增大,求得表观萃取活化能Ea(Sr(Ⅱ))=(24.3±0.7)kJ/mol。  相似文献   

2.
本文在带有阴阳极的恒界面池中研究了HNO_3-N_2H_5NO_3(H_2O)/UO_2(NO_3)_2-HNO_3(30%TBP-煤油)体系在U(Ⅵ)电解还原过程中的U(Ⅵ)反萃和U(Ⅳ)萃取动力学。这是U(Ⅵ)电还原反萃动力学研究的第二步。根据实验结果和数据处理,得到U(Ⅵ)反萃和U(Ⅳ)萃取过程的表观活化能分别为36.02kJ/mol和21.13kJ/mol;U(Ⅵ)反萃和U(Ⅳ)萃取速率随两相搅拌速率的增大而增大;U(Ⅵ)反萃和U(Ⅳ)萃取过程均由扩散控制。随着阴极电位的降低,U(Ⅵ)反萃和U(Ⅳ)萃取速率均增大。  相似文献   

3.
采用分光光度法研究了HNO3溶液中U(Ⅳ)还原Np(Ⅴ)的反应,获得了动力学方程-dc (Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.7 (U(Ⅳ))c1.9 (H+)c (NO-3),25℃时反应速率常数k=(6.37±0.49)×10-3 L3.6/(mol 3.6•min),反应活化能Ea=60.13 kJ/mol。结果表明,浓度为0~4.2×10-2mol/L的U(Ⅵ) 对U(Ⅳ)还原Np(Ⅴ)的反应几乎没有影响,并探讨了可能的反应机理。  相似文献   

4.
TODGA/正十二烷萃取Am(Ⅲ)的动力学   总被引:1,自引:0,他引:1  
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂,正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Am(Ⅲ)的动力学,考察了搅拌转速、两相界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对Am(Ⅲ)萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130 r/min以下时,0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的过程为扩散控制类型,在搅拌转速为150 r/min以上时,则属于化学反应控制的动力学控制模式;(2) 求得了在(170±2) r/min、温度为(25±0.1) ℃时0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率方程:
r0=(dcorg(M)/dt)t=0=k•(S/V)c0.94aq,0(Am)c1.05aq,0(HNO3)c1.19org,0(TODGA)
在25℃下,求得表观速率常数k=(24.2±3.4)×10-3mol-2.18•L2.18•min-1•cm;(3) 0.1mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率随着温度的升高而增大,求得表观活化能Ea=(25.94±0.98)kJ/mol。  相似文献   

5.
用分光光度法研究了HNO3介质中二甲基羟胺(DMHAN)还原Np(Ⅵ)的动力学。通过考察还原剂浓度和酸度等条件对Np(Ⅵ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c(DMHAN)/c0.6(H+),在温度θ=25℃、离子强度I=4.0 mol/kg时,速率常数k=289.8(mol/L)-0.4/min。研究了离子强度c、(U(Ⅵ))和温度等因素对反应的影响。结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响,25℃时反应活化能为53.3 kJ/mol;随着温度的升高,反应速率加快。并在此基础上推测了可能的反应机理。  相似文献   

6.
为开发出对放射性废液中长寿期活化产物具有高效选择性的吸附剂,在室温下制备了金属-有机框架(MOFs)材料ZIF-67,并对该材料进行了热稳定性测试以及结构的表征。首次考察了初始pH值、吸附时间和溶液初始浓度等因素对ZIF-67吸附Co(Ⅱ)和Mn(Ⅱ)的影响。结果表明:ZIF-67属于微孔材料,具有良好的水热稳定性。在pH为6.0、温度为30℃、初始浓度为500 mg/L的条件下,ZIF-67对Co(Ⅱ)和Mn(Ⅱ)的饱和吸附容量分别达到305.63 mg/g和197.43 mg/g。ZIF-67在混合金属离子溶液中对Co(Ⅱ)、Mn(Ⅱ)和Ni(Ⅱ)具有良好的选择吸附性能。因此,ZIF-67在实际放射性废液中活化产物的处理中有良好的应用前景。  相似文献   

7.
用分光光度法研究了硝酸体系中特丁基肼还原Np(Ⅵ )的动力学。考察了特丁基肼浓度、酸度、NO-3 浓度、UO2 + 2 浓度、Fe3 + 浓度以及温度等对反应速率的影响。求出了反应动力学方程 :-dc(Np(VI) ) /dt =kc(Np(Ⅵ) )c0 .9(TBH) /c0 .75(H+ )。 2 5℃时的速率常数 :k=5 .4 4 (mol/L) -0 .15·min-1。反应的表观活化能 :Ea=6 1.2kJ/mol。在所研究的浓度范围内 ,NO-3 ,UO2 + 2 ,Fe3 + 对反应速率影响较小 ;而升高温度能显著提高反应速率  相似文献   

8.
以117Snm(113Sn)示踪法研究了Sn-DTPMP、Sn-DTPA、Sn-EDTMP、Sn-HEDTMP、Sn-TTHMP体系的形成条件,同时研究了不同标记体系与牛血清白蛋白(BSA)的结合性质.研究表明,除DTPA外,其他配体在较高浓度下均能与Sn4 形成络合,但配体浓度较低时锡极易水解,用生理盐水稀释和增加体系pH均加剧水解.研究同时显示,水解锡标记体系与BSA有很强的结合,未水解锡标记体系与BSA的结合率远低于水解锡标记体系.  相似文献   

9.
在0.1 mol/L NaClO4溶液中研究了Pu(Ⅴ)与H2O2反应的动力学。测定了Pu(Ⅴ)与H2O2的反应速率。探讨了温度以及Fe2 ,SO42-,HCO3-,F-等无机离子的存在对反应的影响。实验结果表明,反应对Pu(Ⅴ)与H2O2呈一级,对溶液中H 呈-1级;速率方程可表示为:-dc(Pu(Ⅴ))dt=(3.93±1.93)×10-9c(Pu(Ⅴ))c(H2O2)c(H )。随着温度升高,反应速率明显加快,根据Arrhenius规律,计算出了反应的活化能为Ea=84 kJ/mol。地下水中Fe2 ,SO42-,HCO3-,F-等离子的存在,有利于Pu(Ⅴ)的还原。  相似文献   

10.
单甲基肼还原Np(Ⅴ)的反应动力学   总被引:1,自引:1,他引:0  
用分光光度法研究了HNO3介质中单甲基肼(MMH)还原Np(Ⅴ)的动力学行为.通过考察还原剂浓度和酸度等条件对Np(Ⅴ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.36(MMH)c(H+),在温度θ=35℃,离子强度为2 mol/L时,反应速率常数k=0.004 79(mol/L)-1.36/min.研究了离子强度、c(U(Ⅵ))和温度对反应的影响.结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响;反应活化能为60.43 kJ/mol,随着温度的升高,反应速率加快.并在此基础上推测了可能的反应机理.  相似文献   

11.
TOA萃取硫酸铀酰的动力学研究   总被引:3,自引:1,他引:2  
应用恒界面池法进行了三辛胺(TOA)正庚烷从硫酸介质中萃取硫酸铀酰的动力学研究。测定了三辛胺浓度、硫酸浓度、温度和异丁醇对萃取速率的影响。结果表明,萃取速率受界面化学反应控制,其萃取U()的机理可能是界面两步连续基元反应。正、逆向萃取反应的表观活化能分别为Ef=26kJmol和Eb=72kJmol。结合界面张力γ和有机相电导率ρ的测定,分析和提出了添加剂异丁醇是影响速率的主要原因。  相似文献   

12.
采用TTA-甲苯溶剂萃取法研究了对羟基苯甲酸甲酯(P-HBAME)对Np(Ⅵ)的还原过程动力学。推导出速率方程为-d[Np(Ⅵ)]/dt=k[NpO_2~(2 )][p-HBAME][H~ ]~(-1)。提出了以电子通过苯环上的羟基向Np(Ⅵ)转移的过程为速度控制步骤的反应机理。对于一系列含有羟基和羧基的芳香族化合物还原Np(Ⅵ)的动力学数据进行比较,得出了反应速度常数与羟基的pK_a值的相关关系。  相似文献   

13.
采用静态吸附法研究了坡缕石对水溶液中Sr(Ⅱ)的吸附热力学特征,并考察了时间、溶液pH值和离子强度对吸附效果的影响。结果表明:Sr(Ⅱ)在坡缕石上的吸附受pH值和离子强度的影响明显;坡缕石对Sr(Ⅱ)的吸附主要通过表面络合和离子交换进行;吸附过程符合Lagergren准二级速率方程;吸附等温线符合Freundlich和D-R模型,升高温度有利于吸附反应的进行;热力学参数ΔH°、ΔS°和ΔG°的计算结果表明,坡缕石对Sr(Ⅱ)的吸附是自发进行的吸热反应。  相似文献   

14.
为开发一种兼具高选择性、大吸附容量和快速吸附能力的吸附剂以高效处理放射性废液,本文通过合成后改性,将金属有机框架(MOFs)材料ZIF-90上的游离醛基与硫代氨基脲(TSC)进行缩合,进一步合成了功能化的MOFs材料ZIF-90-TSC。采用扫描电镜、热重分析、N2吸附-解吸、X射线衍射和傅里叶变换红外光谱对该材料进行了表征,并研究了其对模拟废水中Co(Ⅱ)的吸附性能。结果表明:在初始pH=6.70、温度303 K、Co(Ⅱ)初始浓度500 mg/L条件下,ZIF-90-TSC对Co(Ⅱ)的最大吸附量为151.23 mg/g;在多金属离子溶液中ZIF-90-TSC对Co(Ⅱ)和Ni(Ⅱ)表现出选择性吸附。热力学和动力学分析表明,ZIF-90-TSC对Co(Ⅱ)的吸附过程是自发、吸热的过程,符合准二级化学吸附和Langmuir单分子层吸附。因此ZIF-90-TSC在吸附处理放射性废液中的Co(Ⅱ)有一定的应用前景。  相似文献   

15.
开展了硝酸体系中以肼为还原剂、铂黑为催化剂催化还原U(Ⅵ)的动力学研究。通过考察U(Ⅵ)浓度、肼浓度、酸度以及催化剂用量等条件对反应过程的影响,确定了反应的初始动力学速率方程为-dc(UO2+2)dt=kc0.44(UO2+2)c0.19(N2H+5)c-0.23(H+),在60 ℃、固液比rS/L=2.0 g/L时,速率常数k=2.6×10-3 (mol/L)0.6/min。研究了温度对反应速率的影响,结果表明,在20~75 ℃范围内,随着温度升高,反应速率加快,反应过程由动力学控制转变为扩散控制过程。对比了硝酸体系与高氯酸体系的反应动力学实验数据,发现相同条件下硝酸体系的反应速率明显低于高氯酸体系,并分析了其中的原因。  相似文献   

16.
采用Hummers方法和化学共沉淀方法,合成了磁性氧化石墨烯(M/GO)材料,并以此作为吸附剂材料,采用静态批式实验方法研究了其对Co(Ⅱ)的吸附去除机理。结果显示M/GO具有良好的饱和磁场强度,易于利用外加磁场实现吸附后的固-液分离。Co(Ⅱ)在M/GO表面的吸附几乎不受背景离子强度的影响,而受pH的影响显著。其吸附可快速达到平衡,吸附动力学符合准二级速率方程。升高温度可有效促进吸附。吸附等温过程符合Langmuir模型。热力学参数的分析表明Co(Ⅱ)在M/GO表面的吸附为自发吸热过程。  相似文献   

17.
开展了硝酸体系中以肼为还原剂、铂黑为催化剂催化还原U(Ⅵ)的动力学研究。通过考察U(Ⅵ)浓度、肼浓度、酸度以及催化剂用量等条件对反应过程的影响,确定了反应的初始动力学速率方程为-dc(UO2+2)dt=kc0.44(UO2+2)c0.19(N2H+5)c-0.23(H+),在60 ℃、固液比rS/L=2.0 g/L时,速率常数k=2.6×10-3 (mol/L)0.6/min。研究了温度对反应速率的影响,结果表明,在20~75 ℃范围内,随着温度升高,反应速率加快,反应过程由动力学控制转变为扩散控制过程。对比了硝酸体系与高氯酸体系的反应动力学实验数据,发现相同条件下硝酸体系的反应速率明显低于高氯酸体系,并分析了其中的原因。  相似文献   

18.
在0.1 mol/L NaClO4溶液中研究了Pu(Ⅴ)与H2O2反应的动力学。测定了Pu(Ⅴ)与H2O2的反应速率。探讨了温度以及Fe2+,SO2-4,HCO-3,F-等无机离子的存在对反应的影响。实验结果表明,反应对Pu(Ⅴ)与H2O2呈一级,对溶液中H+呈-1级;速率方程可表示为: -dc(Pu(Ⅴ))/dt=(3.93±1.93)×10-9c(Pu(Ⅴ))c(H2O2)/c(H+)。 随着温度升高,反应速率明显加快,根据Arrhenius规律,计算出了反应的活化能为Ea=84 kJ/mol。地下水中Fe2+,SO2-4,HCO-3,F-等离子的存在,有利于Pu(Ⅴ)的还原。  相似文献   

19.
采用实验室模拟方法研究了^99TcO4^-和HTO在某花岗岩中的扩散行为,获得了扩散系数。并对^99TcO4^-,HTO以及文献中报道的一些弱吸附性放射性物种在花岗岩中的扩散系数与分子量的关系进行了初步分析。分析表明,在花岗岩中,^99TcO4^-,HTO,^125I^-,^36Cl^-等弱吸附性放射性物种的扩散系数与相应物种的分子量的平方根近似成反比关系。  相似文献   

20.
采用Hummers方法和化学共沉淀方法,合成了磁性氧化石墨烯(M/GO)材料,并以此作为吸附剂材料,采用静态批式实验方法研究了其对Co(Ⅱ)的吸附去除机理。结果显示M/GO具有良好的饱和磁场强度,易于利用外加磁场实现吸附后的固-液分离。Co(Ⅱ)在M/GO表面的吸附几乎不受背景离子强度的影响,而受pH的影响显著。其吸附可快速达到平衡,吸附动力学符合准二级速率方程。升高温度可有效促进吸附。吸附等温过程符合Langmuir模型。热力学参数的分析表明Co(Ⅱ)在M/GO表面的吸附为自发吸热过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号