首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

2.
A novel aromatic diamine monomer, 4‐(3,5‐dimethoxyphenyl)‐2,6‐bis(4‐aminophenyl)pyridine (DPAP) was successfully synthesized by 4′‐nitroacetophenone and 3,5‐dimethoxybenzaldehyde as raw material. The structure of DPAP was confirmed by Fourier transform infrared, nuclear magnetic resonance, and mass analysis. A series of polyimides (PIs) were obtained by polycondensation with various dianhydrides via the conventional two‐step method. These PIs showed good solubility in organic solvents. They also presented high thermal stability, the glass transition temperatures (Tg) of polymers were in the range of 325–388 °C, and the temperature at 10% weight loss was in the range of 531–572 °C. Furthermore, these polymers also exhibited outstanding hydrophobicity with the contact angles in the range of 89.1°–93.5°. Moreover, the results of wide‐angle X‐ray diffraction (WAXD) confirmed these polymers showed amorphous structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45827.  相似文献   

3.
A novel fluorinated diamine monomer, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane (2), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride with 2,2‐bis(4‐hydroxyphenyl)propane in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Polyimides were synthesized from diamine 2 and various aromatic dianhydrides 3a–f via thermal imidization. These polymers had inherent viscosities ranging from 0.73 to 1.29 dL/g. Polyimides 5a–f were soluble in amide polar solvents and even in less polar solvents. These films had tensile strengths of 87–100 MPa, elongations to break of 8–29%, and initial moduli of 1.7–2.2 GPa. The glass transition temperatures (Tg) of 5a–f were in the range of 222–271°C, and the 10% weight loss temperatures (T10) of them were all above 493°C. Compared with polyimides 6 series based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP) and polyimides 7 based on 2,2‐Bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane (6FBAPP), the 5 series showed better solubility and lower color intensity, dielectric constant, and lower moisture absorption. Their films had cutoff wavelengths between 363 and 404 nm, b* values ranging from 8 to 62, dielectric constants of 2.68–3.16 (1 MHz), and moisture absorptions in the range of 0.04–0.35 wt %. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 922–935, 2005  相似文献   

4.
A series of copolyimides (co‐PIs) with high molecular weights, excellent mechanical properties, heat‐resistant properties, and good solubilities in organic solvents were synthesized from six kinds of commercial dianhydrides (IIa–f) and 1,4‐bis(4‐aminophenoxy)‐2‐tert‐butylbenzene (I). Monomers (IIa–d) for synthesizing insoluble PIs and monomers (IIe,f) for synthesizing soluble PIs were used to synthesize co‐PIs with arbitrary solubilities. Nine kinds of soluble co‐PIs (IIIa–e and IVa–d) were synthesized through chemical or thermal cyclodehydration. These co‐PIs were found to be easily soluble as well as able to be processed by casting from their solutions such as NMP, DMAc, m‐cresol, pyridine, THF, and CH2Cl2. The easily dissolved characteristics of this series of co‐PIs stemmed from the t‐butyl group and ether group within I. Besides, when the used dianhydride molecules contained the organosoluble groups, the solubilities in organic solvents could be greatly enhanced. The co‐PIs could improve the processability of polymers, while increasing their flexible mechanical properties and maintaining their excellent heat‐resistant properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 87–95, 2000  相似文献   

5.
A novel dianhydride, trans‐1,2‐bis(3,4‐dicarboxyphenoxy)cyclohexane dianhydride (1,2‐CHDPA), was prepared through aromatic nucleophilic substitution reaction of 4‐nitrophthalonitrile with trans‐cyclohexane‐1,2‐diol followed by hydrolysis and dehydration. A series of polyimides (PIs) were synthesized from one‐step polycondensation of 1,2‐CHDPA with several aromatic diamines, such as 2,2′‐bis(trifluoromethyl)biphenyl‐4,4′‐diamine (TFDB), bis(4‐amino‐2‐trifluoromethylphenyl)ether (TFODA), 4,4′‐diaminodiphenyl ether (ODA), 1,4‐bis(4‐aminophenoxy)benzene (TPEQ), 4,4′‐(1,3‐phenylenedioxy)dianiline (TPER), 2,2′‐bis[4‐(3‐aminodiphenoxy)phenyl]sulfone (m‐BAPS), and 2,2′‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]sulfone (6F‐BAPS). The glass transition temperatures (Tgs) of the polymers were higher than 198°C, and the 5% weight loss temperatures (Td5%s) were in the range of 424–445°C in nitrogen and 415–430°C in air, respectively. All the PIs were endowed with high solubility in common organic solvents and could be cast into tough and flexible films, which exhibited good mechanical properties with tensile strengths of 76–105 MPa, elongations at break of 4.7–7.6%, and tensile moduli of 1.9–2.6 GPa. In particular, the PI films showed excellent optical transparency in the visible region with the cut‐off wavelengths of 369–375 nm owing to the introduction of trans‐1,2‐cyclohexane moiety into the main chain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42317.  相似文献   

6.
Reversible addition–fragmentation chain transfer (RAFT) polymerization of styrene was carried out in the presence of a novel RAFT reagent, bearing 1,3‐benzodioxole group, benzo [1,3]dioxole‐5‐carbodithioic acid benzo [1,3]dioxol‐5‐ylmethyl ester (BDCB), to prepare end‐functionalized polystyrene. The polymerization results showed that RAFT polymerization of styrene could be well controlled. Number–average molecular weight (Mn(GPC)) increased linearly with monomer conversion, and molecular weight distributions were narrow (Mw/Mn < 1.4). The successful reaction of chain extension and analysis of 1H NMR spectra confirmed the existence of the functional 1,3‐benzodioxole group at the chain‐end of polystyrene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3535–3539, 2006  相似文献   

7.
Using 4‐α‐cumylphenol as the end‐capping agent, polycarbonates (PCs) with a viscosity‐average molecular weight (Mv) of 13,800 were prepared. DVD substrates were molded using these PCs. DVD substrates using PCs end‐capped with 4‐α‐cumylphenol (CP–PCs) have lower retardation than do those using conventional PCs end‐capped with 4‐tert‐butylphenol (TBP–PCs). Using CP–PC, it is possible to bring the mold temperature down about 20°C from the standard conditions of molding DVD substrates using TBP–PC at the same radial birefringence. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 404–406, 2003  相似文献   

8.
A novel monomer diacid, 6,6′‐methylenebis(2‐oxo‐2H‐chromene‐3‐carboxylic acid), was synthesized and used in a direct polycondensation reaction with various aromatic diamines in N‐methyl‐2‐pyrrolidone solution containing dissolved LiCl and CaCl2, using triphenyl phosphite and pyridine as condensing agents to give a series of novel heteroaromatic polyamides containing photosensitive coumarin groups in the main chain. Polyamide properties were investigated by DSC, TGA, GPC, wide‐angle X‐ray scattering, viscosity, and solubility measurements. The copolymers were soluble in aprotic polar solvents, and their inherent viscosities varied between 0.49 and 0.78 dL g?1. The weight‐average and number‐average molecular weights, measured by gel permeation chromatography, were 27,500–43,900 g mol?1 and 46,500–66,300 g mol?1, respectively, and polydispersities in the range of 1.48–1.69. The aromatic polyamides showed glass‐transition temperatures (Tg) ranging from 283 to 329°C and good thermal properties evidenced by no significant weight loss up to 380°C and 10% weight loss recorded above 425°C in air. All the polyamides exhibited an amorphous nature as evidenced by wide‐angle X‐ray diffraction and demonstrated a film forming capability. Water uptake values up to 3.35% were observed at 65% relative humidity. These polymers exhibited strong UV‐vis absorption maxima at 357–369 nm in DMSO solution, and no discernible photoluminescence maxima were detected by exciting with 365 nm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Poly(styrene)‐poly(lactide) (PS‐PLA), poly (tert‐butyl styrene)‐poly(lactide) (PtBuS‐PLA) diblocks, and poly(tert‐butyl styrene)‐poly(styrene)‐poly(lactide) (PtBuS‐PS‐PLA) segmented and tapered triblocks of controlled segment lengths were synthesized using nitroxide‐mediated controlled radical polymerization. Well‐defined PLA‐functionalized macromediators derived from hydroxyl terminated TEMPO (PLAT) of various molecular weights mediated polymerizations of the styrenic monomers in bulk and in dimethylformamide (DMF) solution at 120–130°C. PS‐PLA and PtBuS‐PLA diblocks were characterized by narrow molecular weight distributions (polydispersity index (Mw/Mn) < 1.3) when using the PLAT mediator with the lowest number average molecular weight Mn= 6.1 kg/mol while broader molecular weight distributions were exhibited (Mw/Mn = 1.47‐1.65) when using higher molecular weight mediators (Mn = 7.4 kg/mol and 11.3 kg/mol). Segmented PtBuS‐PS‐PLA triblocks were initiated cleanly from PtBuS‐PLA diblocks although polymerizations were very rapid with PS segments ~ 5–10 kg/mol added within 3–10 min of polymerization at 130°C in 50 wt % DMF solution. Tapering from the PtBuS to the PS segment in semibatch mode at a lower temperature of 120°C and in 50 wt % DMF solution was effective in incorporating a short random segment of PtBuS‐ran‐PS while maintaining a relatively narrow monomodal molecular weight distribution (Mw/Mn ≈ 1.5). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

10.
Two series of alicyclic polyimides composed of cis‐ and trans‐dicyclohexyl‐3,3′,4,4′‐tetracarboxylic dianhydrides (DCDAs) and aromatic diamines were prepared. All cis‐polymers could be readily prepared both in a one‐step method and a two‐step method. However, a two‐step method is preferably applied in the preparation of trans‐polymers, because in a one‐step method the trans‐configuration is partially lost at higher temperatures. These polyimide solutions could be cast into tough and flexible films, which were characterized by inherent viscosity, GPC, DSC, TGA measurements, and UV‐vis spectroscopy. The glass transition temperatures (Tg's) of the polymers were in the range of 210–270°C and the 5% weight loss temperatures were around 480°C for all PIs prepared. The optical transmittances of these films were more than 80% at 350 nm for ca. 15 μm thickness.  相似文献   

11.
A new polyphenol (poly‐2‐[(4‐methylbenzylidene)amino]phenol) (P(2‐MBAP)) containing an azomethine group was synthesized by oxidative polycondensation reaction of 2‐[(4‐methylbenzylidene)amino]phenol (2‐MBAP) with NaOCl, H2O2, and O2 oxidants in an aqueous alkaline medium. The structures of 2‐MBAP and P(2‐MBAP) were characterized by UV‐vis, FT‐IR, and 1H NMR spectra. While the monomer decomposed completely up to 350°C and 57.2% of the polymer decomposed up to 1000°C. The thermal degradation of P(2‐MBAP) was also supported by the Thermo‐IR spectra recorded in the temperature range of 25–800°C. Electrical conductivity of the polymer was observed to increase 108 fold after doping with I2. Antimicrobial activities of the P(2‐MBAP) and 2‐MBAP against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus feacalis, Klebsiella pneumoniae, Bacillus subtilis, Candida albicans, and Saccharomyces cerevisiae were also investigated. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (PDI) of the polymers were determined by gel permeation chromatography (GPC). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41758.  相似文献   

12.
A new kind of aromatic unsymmetrical diamine monomer containing thiazole ring, 2‐amino‐5‐(4‐aminophenyl)‐thiazole (AAPT), was synthesized. A series of novel polyimides were prepared by polycondensation of AAPT with various aromatic dianhydrides by one‐step polyimidation process. The synthesized polyimides had inherent viscosity values of 0.36–0.69 dL/g and were easily dissolved in highly dipolar solvents. Meanwhile, strong and flexible polyimide films were obtained, which have good thermal and thermo‐oxidative stability with the glass transition temperatures (Tg) of 276.7–346.1°C, the temperature at 5% weight loss of 451–492°C in nitrogen and 422–440°C in air, as well as have outstanding mechanical properties with the tensile strengths of 94–122 MPa, elongations at breakage of 5–18%. These films also had dielectric constants of 3.12–3.38 at 10 MHz. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Preparation of water‐soluble chitosan (WSC) was made by treating partially N‐deacetylated chitosan with acetic anhydride in aqueous acetic acid. The optimal conditions of preparing WSC were determined on the basis of orthogonal tests. Low molecular weight WSC with broad molecular weight (600–1.5 kDa) were obtained by the depolymerization of WSC using cellulase at optimum condition of pH 4.5 and 60°C. The solubility of WSC in water and aqueous organic solvents was investigated in detail. Weight–average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of samples were measured by gel permeation chromatography. The structure of WSC and its degraded products were characterized by XRD, FTIR, and MALDI‐TOF MS. The decrease of molecular weight led to transformation of crystal structure and the increase of solubility, but the chemical structures of residues were not modified compared to WSC, which was not hydrolyzed. The solubility of the WSC in water and aqueous organic solvents increased with the decrease of molecular weight. The solubility of the WSC with low molecular weight was rather high even in aqueous dimethylacetamide and dimethylsulfoxide. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1098–1105, 2006  相似文献   

14.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

15.
Three novel polyimides (PIs) having pendent 4‐(quinolin‐8‐yloxy) aniline group were prepared by polycondensation of a new diamine with commercially available tetracarboxylic dianhydrides, such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs were characterized by FTIR, 1H NMR, and elemental analysis; they had high yields with inherent viscosities in the range of 0.4–0.5 dl g−1, and exhibited excellent solubility in many organic solvents such as N,N‐dimethyl acetamide, N,N′‐dimethyl formamide, N‐methyl pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. These PIs exhibited glass transition temperatures (Tg) between 250 and 325° C. Their initial decomposition temperatures (Ti) ranged between 270 and 450°C, and 10% weight loss temperature (T10) up to 500°C with 68% char yield at 600°C under nitrogen atmosphere. Transparent and hard polymer films were obtained via casting from their NMP solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
A random copolymer of propylene with small amounts of 1‐butene comonomer, synthesized with a Ziegler–Natta catalyst, was fractionated by temperature rising elution fractionation (TREF) to systemically investigate the fraction samples' molecular microstructure, as well as their relationship to the melting and crystallization behavior. First, TREF was employed to fractionate the sample, and then crystallization analysis fractionation (Crystaf) was used to check the effect of the TREF experiment. In the characterization of the molecular microstructure, carbon‐13 NMR spectroscopy (13C NMR) and gel permeation chromatography (GPC) experiments gave the following results: the fraction samples have relatively uniform molecular microstructure; with an increase in elution temperature, the 1‐butene content in the fraction samples decreases, but the molecular weight (Mn) and number average sequence length of propylene (n?P) increase. In the study on melting and crystallization behavior, differential scanning calorimetry (DSC) experimental results show that the melting temperature increasingly decreases with an increase in 1‐butene content; however, dependence of the melting temperature on molecular weight becomes weaker and weaker with an increase in the number average molecular weight in the range of number average molecular weight below 1.82 × 105 g/mol. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 845–851, 2006  相似文献   

17.
An in situ–generated tetrafunctional samarium enolate from the reduction of 1,1,1,1‐tetra(2‐bromoisobutyryloxymethyl)methane with divalent samarium complexes [Sm(PPh2)2 and SmI2] in tetrahydrofuran has proven to initiate the ring‐opening polymerization of ?‐caprolactone (CL) giving star‐shaped aliphatic polyesters. The polymerization proceeded with quantitative conversions at room temperature in 2 h and exhibited good controllability of the molecular weight of polymer. The resulting four‐armed poly(?‐caprolactone) (PCL) was fractionated, and the dilute‐solution properties of the fractions were studied in tetrahydrofuran and toluene at 30°C. The Mark–Houwink relations for these solvents were [η] = 2.73 × 10?2Mw0.74 and [η] = 1.97 × 10?2Mw0.75, respectively. In addition, the unperturbed dimensions of the star‐shaped PCL systems were also evaluated, and a significant solvent effect was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 175–182, 2006  相似文献   

18.
The 4‐[4′‐(Hydrazinocarbonyl)phenoxy]‐2‐pentadecylbenzohydrazide was polycondensed with aromatic diacid chlorides viz., terephthalic acid chloride (TPC), isophthalic acid chloride (IPC), and a mixture of TPC : IPC (50 : 50 mol %) to obtain polyhydrazides which on subsequent cyclodehydration reaction in the presence of phosphoryl chloride yielded new poly(1,3,4‐oxadiazole)s bearing flexibilizing ether linkages and pentadecyl side chains. Inherent viscosities of polyhydrazides and poly(1,3,4‐oxadiazole)s were in the range 0.53–0.66 dL g?1 and 0.49–0.53 dL g?1, respectively, indicating formation of medium to reasonably high molecular weight polymers. The number average molecular weights (Mn) and polydispersities (Mw/Mn) of poly(1,3,4‐oxadiazole)s were in the range 14,660–21,370 and 2.2–2.5, respectively. Polyhydrazides and poly(1,3,4‐oxadiazole)s were soluble in polar aprotic solvents such as N,N‐dimethylacetamide, 1‐methyl‐2‐pyrrolidinone, and N,N‐dimethylformamide. Furthermore, poly(1,3,4‐oxadiazole)s were also found to be soluble in solvents such as chloroform, dichloromethane, tetrahydrofuran, pyridine, and m‐cresol. Transparent, flexible, and tough films of polyhydrazides and poly(1,3,4‐oxadiazole)s could be cast from N,N‐dimethylacetamide and chloroform solutions, respectively. Both polyhydrazides and poly(1,3,4‐oxadiazole)s were amorphous in nature and formation of layered structure was observed due to packing of pentadecyl chains. A decrease in glass transition temperature was observed both in polyhydrazides (143–166°C) and poly(1,3,4‐oxadiazole)s (90–102°C) which could be ascribed to “internal plasticization” effect of pentadecyl chains. The T10 values, obtained from TG curves, for poly(1,3,4‐oxadiazole)s were in the range of 433–449°C indicating their good thermal stability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 124:1281–1289, 2012  相似文献   

19.
A series of organo‐soluble co‐polyimides (co‐PIs) were successfully synthesized from 3,3′,4,4′‐benzophenonetetracarboxylic‐dianhydride (BTDA), 1,4‐bis‐(4‐amino‐2‐trifluoromethyl‐phemoxy)‐benzene (p‐6FAPB) and 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (BIA) via the one‐pot high‐temperature polymerization using N‐methyl‐2‐pyrrolidone (NMP) as the solvent. The imidization reaction of poly(amic acid)s in solution state was discussed in detail by attenuated total reflectance‐Fourier transform infrared spectra (ATR‐FTIR), and the results illustrate that the introduced benzimidazole moiety has a catalytic activity on the imidization process. The number‐average molecular weights and polydispersity index of these PIs measured by gel permeation chromatography range from 1.11 × 105 to 2.20 × 105 and 1.82 to 3.84, respectively. The prepared co‐PIs exhibit sufficient solubility in some polar solvents and high optical transparency. Meanwhile, these co‐PI films show good mechanical performances, and the strength and modulus of the sample with the molar ratio of p‐6FAPB/BIA = 5/5 reach 183 MPa and 4.71 GPa, respectively. Moreover, the obtained co‐PIs possess high glass transition temperatures (Tg) (above 260 °C) and good thermal stability with 5% weight loss temperature in the range of 502–531 °C in the nitrogen atmosphere. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45497.  相似文献   

20.
A new trifluoromethylated bis(ether amine) monomer, 9,9‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]xanthene (BATFPX), was prepared through the nucleophilic aromatic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 9,9‐bis(4‐hydroxyphenyl)xanthene in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of novel fluorinated polyimides were synthesized from BATFPX with various commercially available aromatic tetracarboxylic dianhydrides by one‐step polycondensation in m‐cresol. The resulting polyimides were readily soluble in many organic solvents such as N,N‐dimethylacetamide and tetrahydrofuran, and afforded transparent, flexible and strong films with low moisture absorption (0.28–0.51%), low dielectric constant (2.85–3.26 at 1 MHz) and good optical transparency with UV‐visible absorption cut‐off wavelengths at 352–410 nm. All the polyimides were amorphous and exhibited high thermal stability, with glass transition temperatures of 282–330 °C, 5% weight loss temperatures above 520 °C in nitrogen or air and char yields higher than 55% at 800 °C in nitrogen. Also, these polyimides had good mechanical properties with tensile strengths of 93–118 MPa, elongations at break of 9–16% and initial moduli of 2.07–2.58 GPa. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号