首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halo coronal mass ejections (HCMEs) originating from regions close to the center of the Sun are likely to be responsible for severe geomagnetic storms. It is important to predict geoeffectiveness of HCMEs by using observations when they are still near the Sun. Unfortunately, coronagraphic observations do not provide true speeds of CMEs because of projection effects. In the present paper, we present a new technique to allow estimates of the space speed and approximate source location using projected speeds measured at different position angles for a given HCME (velocity asymmetry). We apply this technique to HCMEs observed during 2001 – 2002 and find that the improved speeds are better correlated with the travel times of HCMEs to Earth and with the magnitudes of ensuing geomagnetic storms.  相似文献   

2.
Theoretical studies of the normal modes of a coronal slab often neglect gravity, as in Edwin and Roberts (Solar Phys. 71, 239, 1982). Here we study analytically the effect of gravity acting on a horizontal slab as a first step away from a homogeneous medium. Because of the inclusion of gravity, the symmetry of a homogeneous slab is lost, so the normal modes cannot be classified into kink and sausage modes. The presence of gravity also modifies the oscillatory frequencies of the slab, as well as the lower cutoff frequency, resulting in the possible transition between surface and body modes. For general coronal parameters, the dimensionless gravity term turns out to be small, so these effects are also small. A.J. Díaz’s current affiliation: Universitat de les Illes Balears, Palma, E-07122, Spain.  相似文献   

3.
Recent numerical investigations of wave propagation near coronal magnetic null points (McLaughlin and Hood: Astron. Astrophys. 459, 641, 2006) have indicated how a fast MHD wave partially converts into a slow MHD wave as the disturbance passes from a low-β plasma to a high-β plasma. This is a complex process and a clear understanding of the conversion mechanism requires the detailed investigation of a simpler model. An investigation of mode conversion in a stratified, isothermal atmosphere with a uniform, vertical magnetic field is carried out, both numerically and analytically. In contrast to previous investigations of upward-propagating waves (Zhugzhda and Dzhalilov: Astron. Astrophys. 112, 16, 1982a; Cally: Astrophys. J. 548, 473, 2001), this paper studies the downward propagation of waves from a low-β to high-β environment. A simple expression for the amplitude of the transmitted wave is compared with the numerical solution.  相似文献   

4.
The decrease in the rms contrast of time-averaged images with the averaging time is compared between four data sets: (1) a series of solar granulation images recorded at La Palma in 1993, (2) a series of artificial granulation images obtained in numerical simulations by Rieutord et al. (Nuovo Cimento 25, 523, 2002), (3) a similar series computed by Steffen and his colleagues (see Wedemeyer et al. in Astron. Astrophys. 44, 1121, 2004), (4) a random field with some parameters typical of the granulation, constructed by Rast (Astron. Astrophys. 392, L13, 2002). In addition, (5) a sequence of images was obtained from real granulation images by using a temporal and spatial shuffling procedure, and the contrast of the average of n images from this sequence as a function of n is analysed. The series (1) of real granulation images exhibits a considerably slower contrast decrease than do both the series (3) of simulated granulation images and the series (4) of random fields. Starting from some relatively short averaging times t, the behaviour of the contrast in series (3) and (4) resembles the t −1/2 statistical law, whereas the shuffled series (5) obeys the n −1/2 law from n=2 on. Series (2) demonstrates a peculiarly slow decline of contrast, which could be attributed to particular properties of the boundary conditions used in the simulations. Comparisons between the analysed contrast-variation laws indicate quite definitely that the brightness field of solar granulation contains a long-lived component, which could be associated with locally persistent dark intergranular holes and/or with the presence of quasi-regular structures. The suggestion that the random field (4) successfully reproduces the contrast-variation law for the real granulation (Rast in Astron. Astrophys. 392, L13, 2002) can be dismissed.  相似文献   

5.
The X-ray Telescope (XRT) aboard the Hinode satellite is a grazing incidence X-ray imager equipped with a 2048×2048 CCD. The XRT has 1 arcsec pixels with a wide field of view of 34×34 arcmin. It is sensitive to plasmas with a wide temperature range from < 1 to 30 MK, allowing us to obtain TRACE-like low-temperature images as well as Yohkoh/SXT-like high-temperature images. The spacecraft Mission Data Processor (MDP) controls the XRT through sequence tables with versatile autonomous functions such as exposure control, region-of-interest tracking, flare detection, and flare location identification. Data are compressed either with DPCM or JPEG, depending on the purpose. This results in higher cadence and/or wider field of view for a given telemetry bandwidth. With a focus adjust mechanism, a higher resolution of Gaussian focus may be available on-axis. This paper follows the first instrument paper for the XRT (Golub et al., Solar Phys. 243, 63, 2007) and discusses the design and measured performance of the X-ray CCD camera for the XRT and its control system with the MDP.  相似文献   

6.
Yu Liu 《Solar physics》2008,249(1):75-84
Liu et al. (Astrophys. J. 628, 1056, 2005a) described one surge – coronal mass ejection (CME) event showing a close relationship between solar chromospheric surge ejection and CME that had not been noted before. In this work, large Hα surges (>72 Mm, or 100 arcsec) are studied. Eight of these were associated with CMEs. According to their distinct morphological features, Hα surges can be classified into three types: jetlike, diffuse, and closed loop. It was found that all of the jetlike surges were associated with jetlike CMEs (with angular widths ≤30 degrees); the diffuse surges were all associated with wide-angle CMEs (e.g., halo); the closed-loop surges were not associated with CMEs. The exclusive relation between Hα surges and CMEs indicates difference in magnetic field configurations. The jetlike surges and related narrow CMEs propagate along coronal fields that are originally open. The unusual transverse mass motions in the diffuse surges are suggested to be due to magnetic reconnections in the corona that produce wide-angle CMEs. For the closed-loop surges, their paths are just outlining stable closed loops close to the solar surface. Thus no CMEs are associated with them.  相似文献   

7.
Various solar wind forecasting methods have been developed during the past decade, such as the Wang?–?Sheeley model and the Hakamada?–?Akasofu?–?Fry Version 2 (HAFv2) model. Also, considerable correlation has been found between the solar wind speed v and the coronal hole (CH) area A M on the visible side of the Sun, showing quantitative improvement of forecasting accuracy in low CME activity periods (e.g., Vr?nak, Temmer, and Veronig, Solar Phys. 240, 315, 2007a). Properties of lower layers of the solar atmosphere are good indications of the subsequent interplanetary and geomagnetic activities. We analyze the SOHO/EIT 284 Å images and construct a new forecasting factor (Pch) from the brightness of the solar EUV emission, and a good correlation is found between the Pch factor and the 3-day-lag solar wind velocity (v) probed by the ACE spacecraft. The main difference between the Pch and A M factor is that Pch does not depend on the CH-boundary estimate and can reflect both the area and brightness of CH. A simple method of forecasting the solar wind speed near Earth in low CME activity periods is presented. Between Pch and v from 21 November until 26 December 2003, the linear correlation coefficient is R=0.89. For comparison we also analyze the data in the same period (DOY 25?–?125, 2005) as Vr?nak, Temmer, and Veronig (Solar Phys. 240, 315, 2007a), who used the CH areas A M for predicting the solar wind parameters. In this period the correlation coefficient between Pch and v is R=0.70, whereas for A M and v the correlation coefficient is R=0.62. The average relative difference between the calculated and the observed values is $\overline{|\delta|}\approx 12.15\%Various solar wind forecasting methods have been developed during the past decade, such as the Wang – Sheeley model and the Hakamada – Akasofu – Fry Version 2 (HAFv2) model. Also, considerable correlation has been found between the solar wind speed v and the coronal hole (CH) area A M on the visible side of the Sun, showing quantitative improvement of forecasting accuracy in low CME activity periods (e.g., Vršnak, Temmer, and Veronig, Solar Phys. 240, 315, 2007a). Properties of lower layers of the solar atmosphere are good indications of the subsequent interplanetary and geomagnetic activities. We analyze the SOHO/EIT 284 ? images and construct a new forecasting factor (Pch) from the brightness of the solar EUV emission, and a good correlation is found between the Pch factor and the 3-day-lag solar wind velocity (v) probed by the ACE spacecraft. The main difference between the Pch and A M factor is that Pch does not depend on the CH-boundary estimate and can reflect both the area and brightness of CH. A simple method of forecasting the solar wind speed near Earth in low CME activity periods is presented. Between Pch and v from 21 November until 26 December 2003, the linear correlation coefficient is R=0.89. For comparison we also analyze the data in the same period (DOY 25 – 125, 2005) as Vršnak, Temmer, and Veronig (Solar Phys. 240, 315, 2007a), who used the CH areas A M for predicting the solar wind parameters. In this period the correlation coefficient between Pch and v is R=0.70, whereas for A M and v the correlation coefficient is R=0.62. The average relative difference between the calculated and the observed values is . Furthermore, for the ten peaks during the analysis period, Pch and v show a correlation coefficient of R=0.78, and the average relative difference between the calculated and the observed peak values is . Moreover, the Pch factor can eliminate personal bias in the forecasting process, which existed in the method using CH area as input parameter, because CH area depends on the CH-boundary estimate but Pch does not. Until now the CH-boundary could not be easily determined since no quantitative criteria can be used to precisely locate CHs from observations, which led to differences in forecasting accuracy.  相似文献   

8.
We use the flux-transport dynamo prediction scheme introduced by Dikpati, de Toma, and Gilman (Geophys. Res. Lett. 33, L05102, 2006) to make separate simulations and predictions of sunspot cycle peaks for northern and southern hemispheres. Despite the division of the data, the skill level achieved is only slightly lower than that achieved for the sum of both hemispheres. The model shows skill at simulating and predicting the difference in peaks between North and South, provided that difference is more than a few percent. The simulation and prediction skill is achieved without adjustment to any parameters of the model that were used when peaks for the sum of North and South sunspot areas was simulated. The results are also very insensitive to the averaging length applied to the input data, provided the simulations and predictions are for peaks defined by averaging the observations over at least 13 rotations. However, in its present form, the model is not capable of skillfully simulating or predicting short-time-scale features of individual solar cycles.  相似文献   

9.
The solar wind quasi-invariant (QI) has been defined by Osherovich, Fainberg, and Stone (Geophys. Res. Lett. 26, 2597, 1999) as the ratio of magnetic energy density and the energy density of the solar wind flow. In the regular solar wind QI is a rather small number, since the energy of the flow is almost two orders of magnitude greater than the magnetic energy. However, in magnetic clouds, QI is the order of unity (less than 1) and thus magnetic clouds can be viewed as a great anomaly in comparison with its value in the background solar wind. We study the duration, extent, and amplitude of this anomaly for two groups of isolated magnetic clouds: slow clouds (360<v<450 km s−1) and fast clouds (450≤v<720 km s−1). By applying the technique of superposition of epochs to 12 slow and 12 fast clouds from the catalog of Richardson and Cane (Solar Phys. 264, 189, 2010), we create an average slow cloud and an average fast cloud observed at 1 AU. From our analysis of these average clouds, we obtain cloud boundaries in both time and space as well as differences in QI amplitude and other parameters characterizing the solar wind state. Interplanetary magnetic clouds are known to cause major magnetic storms at the Earth, especially those clouds which travel from the sun to the Earth at high speeds. Characterizing each magnetic cloud by its QI value and extent may help in understanding the role of those disturbances in producing geomagnetic activity.  相似文献   

10.
In the framework of ‘microscopic’ theory of black holes (J. Phys. Soc. Jpn. Suppl. B 70, 84, 2001; Astrophys. USSR 4, 659, 1996; 35, 335, 1991, 33, 143, 1990, 31, 345, 1989a; Astrophys. Space Sci. 1, 1992; Dokl. Akad. Nauk USSR 309, 97, 1989b), and references therein, we address the ‘pre-radiation time’ (PRT) of neutrinos from black holes, which implies the lapse of time from black hole’s birth till radiation of an extremely high energy neutrinos. For post-PRT lifetime, the black hole no longer holds as a region of spacetime that cannot communicate with the external universe. We study main features of spherical accretion onto central BH and infer a mass accretion rate onto it, and, further, calculate the resulting PRT versus bolometric luminosity due to accretion onto black hole. We estimate the PRTs of AGN black holes, with the well-determined masses and bolometric luminosities, collected from the literature by Woo Jong-Hak and Urry (Astrophys. J. 579, 530, 2002) on which this paper is partially based. The simulations for the black holes of masses M BH ≃(1.1⋅106 ÷4.2⋅109) M give the values of PRTs varying in the range of about T BH ≃(4.3⋅105 ÷5.6⋅1011) yr. The derived PRTs for the 60 AGN black holes are longer than the age of the universe (∼13.7 Gyr) favored today. At present, some of remaining 174 BHs may radiate neutrinos. However, these results would be underestimated if the reservoir of gas for accretion in the galaxy center is quite modest, and no obvious way to feed the BHs with substantial accretion.  相似文献   

11.
Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms, hence their three-dimensional structures are important for space weather. We compare three cone models: an elliptical-cone model, an ice-cream-cone model, and an asymmetric-cone model. These models allow us to determine three-dimensional parameters of HCMEs such as radial speed, angular width, and the angle [γ] between sky plane and cone axis. We compare these parameters obtained from three models using 62 HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root-mean-square (RMS) error between the highest measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.8). The correlation coefficients between angular widths range from 0.1 to 0.48 and those between γ-values range from ?0.08 to 0.47, which is much smaller than expected. The reason may be the different assumptions and methods. The RMS errors between the highest measured projection speeds and the highest estimated projection speeds of the elliptical-cone model, the ice-cream-cone model, and the asymmetric-cone model are 376 km?s?1, 169 km?s?1, and 152 km?s?1. We obtain the correlation coefficients between the location from the models and the flare location (R > 0.45). Finally, we discuss strengths and weaknesses of these models in terms of space-weather application.  相似文献   

12.
In this study we use the ordinal logistic regression method to establish a prediction model, which estimates the probability for each solar active region to produce X-, M-, or C-class flares during the next 1-day time period. The three predictive parameters are (1) the total unsigned magnetic flux T flux, which is a measure of an active region’s size, (2) the length of the strong-gradient neutral line L gnl, which describes the global nonpotentiality of an active region, and (3) the total magnetic dissipation E diss, which is another proxy of an active region’s nonpotentiality. These parameters are all derived from SOHO MDI magnetograms. The ordinal response variable is the different level of solar flare magnitude. By analyzing 174 active regions, L gnl is proven to be the most powerful predictor, if only one predictor is chosen. Compared with the current prediction methods used by the Solar Monitor at the Solar Data Analysis Center (SDAC) and NOAA’s Space Weather Prediction Center (SWPC), the ordinal logistic model using L gnl, T flux, and E diss as predictors demonstrated its automatic functionality, simplicity, and fairly high prediction accuracy. To our knowledge, this is the first time the ordinal logistic regression model has been used in solar physics to predict solar flares.  相似文献   

13.
Solar p modes are one of the dominant types of coherent signals in Doppler velocity in the solar photosphere, with periods showing a power peak at five minutes. The propagation (or leakage) of these p-mode signals into the higher solar atmosphere is one of the key drivers of oscillatory motions in the higher solar chromosphere and corona. This paper examines numerically the direct propagation of acoustic waves driven harmonically at the photosphere, into the nonmagnetic solar atmosphere. Erdélyi et al. (Astron. Astrophys. 467, 1299, 2007) investigated the acoustic response to a single point-source driver. In the follow-up work here we generalise this previous study to more structured, coherent, photospheric drivers mimicking solar global oscillations. When our atmosphere is driven with a pair of point drivers separated in space, reflection at the transition region causes cavity oscillations in the lower chromosphere, and amplification and cavity resonance of waves at the transition region generate strong surface oscillations. When driven with a widely horizontally coherent velocity signal, cavity modes are caused in the chromosphere, surface waves occur at the transition region, and fine structures are generated extending from a dynamic transition region into the lower corona, even in the absence of a magnetic field.  相似文献   

14.
A second order atmospheric drag theory based on the usage of TD88 model is constructed. It is developed to the second order in terms of TD88 small parameters K n,j . The short periodic perturbations, of all orbital elements, are evaluated. The secular perturbations of the semi-major axis and of the eccentricity are obtained. The theory is applied to determine the lifetime of the satellites ROHINI (1980 62A), and to predict the lifetime of the microsatellite MIMOSA. The secular perturbations of the nodal longitude and of the argument of perigee due to the Earth’s gravity are taken into account up to the second order in Earth’s oblateness.  相似文献   

15.
We studied the characteristics of the zebra-associated spike-like bursts that were recorded with high time resolution at 1420 MHz in four intervals (from 12:45 to 12:48 UT) during 5 August 2003. Our detailed analysis is based on the selection of more than 500 such spike-like bursts and it is, at least to our knowledge, the first study devoted to such short-lived bursts. Their characteristics are different from those pertinent to “normal” spike bursts, as presented in the paper by Güdel and Benz (Astron. Astrophys. 231, 202, 1990); in particular, their duration (about 7.4 ms at half power) is shorter, so they should be members of the SSS (super short structures) family (Magdalenić et al., Astrophys. J. 642, L77, 2006). The bursts were generally strongly R-polarized; however, during the decaying part of interval I a low R-polarized and L-polarized bursts were also present. This change of polarization shows a trend that resembles the peculiar form of the zebra lines in the spectral dominion (“V” like). A global statistical analysis on the bursts observed in the two polarimetric channels shows that the highest cross-correlation coefficient (about 0.5) was pertinent to interval I. The zebras and the bursts can be interpreted by the same double plasma resonance process as proposed by Bárta and Karlicky (Astron. Astrophys. 379, 1045, 2001) and Karlicky et al. (Astron. Astrophys. 375, 638, 2001); in particular, the spikes are generated by the interruption of this process by assumed turbulence (density or magnetic field variations). This process should be present in the region close to the reconnection site (e.g., in the plasma reconnection outflows) where the density and the magnetic field vary strongly.  相似文献   

16.
Observations indicate that in plage areas (i.e. in active regions outside sunspots) acoustic waves travel faster than in the quiet Sun, leading to shortened travel times and higher p-mode frequencies. Coupled with the 11-year variation of solar activity, this may also explain the solar cycle variation of oscillation frequencies. While it is clear that the ultimate cause of any difference between the quiet Sun and plage is the presence of magnetic fields of order 100 G in the latter, the mechanism by which the magnetic field exerts its influence has not yet been conclusively identified. One possible such mechanism is suggested by the observation that granular motions in plage areas tend to be slightly “abnormal”, dampened compared to the quiet Sun. In this paper we consider the effect that abnormal granulation observed in active regions should have on the propagation of acoustic waves. Any such effect is found to be limited to a shallow surface layer where sound waves propagate nearly vertically. The magnetically suppressed turbulence implies higher sound speeds, leading to shorter travel times. This time shift Δ τ is independent of the travel distance, while it shows a characteristic dependence on the assumed plage field strength. As a consequence of the variation of the acoustic cutoff with height, Δ τ is expected to be significantly higher for higher frequency waves within the observed regime of 3 – 5 mHz. The lower group velocity near the upper reflection point further leads to an increased envelope time shift, as compared to the phase shift. p-mode frequencies in plage areas are increased by a corresponding amount, Δ ν/ν=ν Δ τ. These characteristics of the time and frequency shifts are in accordance with observations. The calculated overall amplitudes of the time and frequency shifts are comparable to, but still significantly less than (by a factor of 2 to 5), those suggested by measurements.  相似文献   

17.
We use an innovative research technique to analyze combined images from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) and the Transition Region and Coronal Explorer (TRACE). We produce a high spatial and temporal resolution simulated CDS raster or “composite” map from TRACE data and use this composite map to jointly analyze data from both instruments. We show some of the advantages of using the “composite” map method for coronal loop studies. We investigate two postflare loop structures. We find cool material (250 000 K) concentrated at the tips or apex of the loops. This material is found to be above its scale height and therefore not in hydrostatic equilibrium. The exposure times of the composite map and TRACE images are used to give an estimate of another loop’s cooling time. The contribution to the emission in the TRACE images for the spectral lines present in its narrow passband is estimated by using the CDS spectral data and CHIANTI to derive synthetic spectra. We obtain cospatial and cotemporal data collected by both instruments in SOHO Joint Observations Program (JOP) 146 and show how the combination of these data can be utilized to obtain more accurate measurements of coronal plasmas than if analyzed individually. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

18.
We present a careful investigation of the magnetofrictional relaxation and extrapolation technique applied to the reconstruction of two test fields. These fields are taken from the family of nonlinear force-free magnetic equilibria constructed by Low and Lou (Astrophys. J. 352, 343, 1990), which have emerged as standard tests for extrapolation techniques in recent years. For the practically relevant case that only the field values in the bottom plane of the considered volume (vector magnetogram) are used as input information (i.e., not including the knowledge about the test field at the side and top boundaries), the test field is reconstructed to a higher accuracy than obtained previously. Detailed diagnostics of the reconstruction accuracy show that the implementation of fourth-order spatial discretization was essential to reach this accuracy for the given test fields and to achieve near machine precision in satisfying the solenoidal condition. Different variants of boundary conditions are tested, which all yield comparable accuracy. In its present implementation, the technique yields a scaling of computing time with total number of grid points only slightly below N 5/3, which is too steep for applications to large (≥10242) magnetograms, except on supercomputers. Directions for improvement are outlined.  相似文献   

19.
A new class of dark energy models in a Locally Rotationally Symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the present paper. The Einstein’s field equations have been solved by applying a variation law for generalized Hubble’s parameter given by Berman: Nuovo Cimento 74:182 (1983) which generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The dark energy EoS parameter ω is found to be time dependent and its existing range for both models is in good agreement with the three recent observations of (i) SNe Ia data (Knop et al.: Astrophys. J. 598:102 (2003)), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al.: Astrophys. J. 606:702 (2004)) and latest (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al.: Astrophys. J. Suppl. 180:225 (2009); Komatsu et al. Astrophys. J. Suppl. 180:330 (2009)). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric behaviour of the universe have also been discussed in detail.  相似文献   

20.
Forecasting space weather more accurately from solar observations requires an understanding of the variations in physical properties of interplanetary (IP) shocks as solar activity changes. We examined the characteristics (occurrence rate, physical parameters, and types of shock driver) of IP shocks. During the period of 1995 – 2001, a total of 249 forward IP shocks were observed. In calculating the shock parameters, we used the solar wind data from Wind at the solar minimum period (1995 – 1997) and from ACE since 1998 including the solar maximum period (1999 – 2001). Most of IP shocks (68%) are concentrated in the solar maximum period. The values of physical quantities of IP shocks, such as the shock speed, the sonic Mach number, and the ratio of plasma density compression, are larger at solar maximum than at solar minimum. However, the ratio of IMF compression is larger at solar minimum. The IP shock drivers are classified into four groups: magnetic clouds (MCs), ejecta, high speed streams (HSSs), and unidentified drivers. The MC is the most dominant and strong shock driver and 150 out of total 249 IP shocks are driven by MCs. The MC is a principal and very effective shock driver not only at solar maximum but also at solar minimum, in contrast to results from previous studies, where the HSS is considered as the dominant IP shock driver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号