首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoribonuclease VI from Artemia larvae is non-competitively inhibited by cytidine 2'-phosphate with a Ki ca 1 microM. Neither of the cytidine monophosphates isomers with the phosphate group in the 3' or 5' position nor the cyclic 2':3' phosphate are inhibitors at concentrations up to 100 microM. Adenosine, guanosine and uridine 2' or 3' phosphates are also ineffective in this range of concentrations. Certain polyribonucleotides are potent competitive inhibitors of the ribonuclease activity.  相似文献   

2.
Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling.  相似文献   

3.
神经生长因子制备工艺的改进及有关问题的讨论   总被引:1,自引:0,他引:1  
为了达到规模化生产的目的 ,本文在神经生长因子制备工艺前增加了去脂处理 ,省略了CM (I)柱前的透析 ,并对影响生产收量的因素进行了探讨 ,使实验室结果得以有效放大 ,每 2 0 0 0对鼠颌下腺可提取蛋白 91mg ,总活性达 6 9× 10 7Bu。  相似文献   

4.
Epidermal growth factor (EGF) is a single polypeptide of 53 amino acid residues which is involved in the regulation of cell proliferation. Egf exerts its effects in the target cells by binding to the plasma membrane located EGF receptor. The EGF receptor is a transmembrane protein tyrosine kinase. Binding of EGF to the receptor causes activation of the kinase and subsequently receptor autophosphorylation. The autophosphorylation is essential for the interaction of the receptor with its substrates. These bind to the receptor by the so-called SH2 domains. The signal transduction pathways activated by EGF include the phosphatidylinositol pathway, leading to activation of protein kinase C and to increase in the intracellular Ca2+ concentration, and to the ras pathway leading to MAP kinase activation. Recently the cytoplasm has been implicated as playing an important role in EGF induced signal transduction. The EGF receptor has been demonstrated to be an actin-binding protein. In addition EGF causes a rapid actin depolymerisation and the formation of membrane ruffles. In particular these membrane ruffles have been shown to act as the first site of signal transduction after EGF binding, and thus may be considered as signal transduction structures. Finally evidence has been presented suggesting a positive role for EGF and/or the receptor in the nucleus.  相似文献   

5.
6.
TRAF2 has an important function in mediating the TNF-R signaling pathway toward activation of NF-κB and JNKs. Here we reveal a novel function of TRAF2 in the epidermal growth factor (EGF) signaling pathway. Knockdown of TRAF2 blocked EGF-induced AP-1 activity and anchorage- independent cell transformation. Notably, we showed that EGF induces ribosomal S6 kinase 2 (RSK2) ubiquitination, and knocking down TRAF2 suppresses ubiquitination of RSK2 induced by EGF. We also found that TRAF2 affects RSK2 activity through RSK2 ubiquitination. RSK2 plays a critical role in AP-1 activity mediated through CREB and c-Fos, which regulates anchorage-independent cell transformation. In addition, TRAF2 is overexpressed in colon cancer and required for colon cancer development, suggesting that TRAF2 might be a potential molecular target for cancer prevention and treatment.  相似文献   

7.
The addition of nerve growth factor to organ cultures of superior cervical ganglia from immature rats specifically stimulated the incorporation of 32P-orthophosphate into phosphatidylinositol fraction. Equimolar concentrations of other hormones such as insulin, glucagon, thyroxine and growth hormone did not cause any stimulation of the incorporation of 14C-myoinositol into phosphatidylinositol. The stimulation of phosphatidylinositol turnover was observed over a concentration of nerve growth factor ranging from 10?10M to 10?7M. Nerve growth factor specific “inositide effect” was found to be sensitive to nerve growth factor antibody, 2,4-dinitrophenol, a high concentration of bovine growth hormones but not to Actinomycin D. The physiological significance of this finding in relation to nerve growth factor action in this target tissue is discussed.  相似文献   

8.
In this study we localized receptor binding sites for 125I-human epidermal growth factor (hEGF) in the antrum of the adult canine stomach. High levels of specific 125I-hEGF binding sites were observed over the mucosa and muscularis mucosa, whereas specific binding sites were not detectable over the submucosa, external circular and longitudinal muscle or myenteric neurons. These results are in agreement with previous studies which indicated that EGF stimulates the proliferation of cultured epithelial cells and inhibits gastric acid secretion. This suggests that EGF may be a useful therapeutic agent in the healing of gastric ulcers.  相似文献   

9.
The binding of EGF induces dimerization of its receptor, leading to the stimulation of its intracellular tyrosine kinase activity. Kinase activation occurs within the context of an asymmetric dimer in which one kinase domain serves as the activator for the other kinase domain but is not itself activated. How ligand binding is related to the formation and dynamics of this asymmetric dimer is not known. The binding of EGF to its receptor is negatively cooperative--that is, EGF binds with lower affinity to the second site on the dimer than to the first site on the dimer. In this study, we analyzed the binding of (125)I-EGF to a series of EGF receptor mutants in the intracellular juxtamembrane domain and demonstrate that the most membrane-proximal portion of this region plays a significant role in the genesis of negative cooperativity in the EGF receptor. The data are consistent with a model in which the binding of EGF to the first site on the dimer induces the formation of one asymmetric kinase dimer. The binding of EGF to the second site is required to disrupt the initial asymmetric dimer and allow the formation of the reciprocal asymmetric dimer. Thus, some of the energy of binding to the second site is used to reorient the first asymmetric dimer, leading to a lower binding affinity and the observed negative cooperativity.  相似文献   

10.
Although ligand-induced dimerization or oligomerization of receptors is a well established mechanism of growth factor signaling, increasing evidence indicates that biological responses are often mediated by receptor trans-signaling mechanisms involving two or more receptor systems. These include G protein-coupled receptors, cytokine, growth factor and trophic factor receptors. Greater responsiveness and inhibitory signaling responses are provided when different signaling pathways merge through receptor trans-signaling.  相似文献   

11.
12.
Using proteomics and immunofluorescence, we demonstrated epidermal growth factor (EGF) induced recruitment of extrinsic V(1) subunits of the vacuolar (H(+))-ATPase (V-ATPase) to rat liver endosomes. This was accompanied by reduced vacuolar pH. Bafilomycin, an inhibitor of V-ATPase, inhibited EGF-stimulated DNA synthesis and mammalian target of rapamycin complex 1 (mTORC1) activation as indicated by a decrease in eukaryotic initiation factor 4E-binding 1 (4E-BP1) phosphorylation and p70 ribosomal S6 protein kinase (p70S6K) phosphorylation and kinase activity. There was no corresponding inhibition of EGF-induced Akt and extracellular signal-regulated kinase (Erk) activation. Chloroquine, a neutralizer of vacuolar pH, mimicked bafilomycin effects. Bafilomycin did not inhibit the association of mTORC1 with Raptor nor did it affect AMP-activated protein kinase activity. Rather, the intracellular concentrations of essential but not non-essential amino acids were decreased by bafilomycin in EGF-treated primary rat hepatocytes. Cycloheximide, a translation elongation inhibitor known to augment intracellular amino acid levels, prevented the effect of bafilomycin on amino acids levels and completely reversed its inhibition of EGF-induced mTORC1 activation. In vivo administration of EGF stimulated the recruitment of Ras homologue enriched in brain (Rheb) but not mammalian target of rapamycin (mTOR) to endosomes and lysosomes. This was inhibited by chloroquine treatment. Our results suggest a role for vacuolar acidification in EGF signaling to mTORC1.  相似文献   

13.
Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) signal through EGF and PDGF receptors, which are important receptor tyrosine kinases (RTKs). Growth hormone (GH) and prolactin (PRL) are four helical bundle peptide hormones that signal via GHR and PRLR, members of the cytokine receptor superfamily. In this study, we examine crosstalk between signaling pathways emanating from these disparate receptor groups (RTKs and cytokine receptors). We find that GH and EGF specifically synergize for activation of ERK in murine preadipocytes. The locus of this synergy resides at the level of MEK activation, but not above this level (i.e., not at the level of EGFR, SHC, or Raf activation). Furthermore, dephosphorylation of the scaffold protein, KSR, at a critical serine residue is also synergistically promoted by GH and EGF, suggesting that GH sensitizes these cells to EGF-induced ERK activation by augmenting the actions of KSR in facilitating MEK-ERK activation. Similarly specific synergy in ERK activation is also detected in human T47D breast cancer cells by cotreatment with PRL and PDGF. This synergy also resides at the level of MEK activation. Consistent with this synergy, PRL and PDGF also synergized for c-fos-dependent transactivation of a luciferase reporter gene in T47D cells, indicating that events downstream of ERK activation reflect this signaling synergy. Important conceptual and physiological implications of these findings are discussed.  相似文献   

14.
The effect of epidermal growth factor (EGF) on collagen fiber formation in clone RLC-18(4) epithelial cells obtained from rat liver was investigated by silver impregnation and assay of hydroxyproline content. EGF caused dose-related stimulation of collagen fiber formation and was effective at as low as concentration as 0.5 ng/ml. Actinomycin D suppressed collagen fiber formation increased by EGF, suggesting that this factor stimulates de novo collagen synthesis in the cells.  相似文献   

15.
The binding of radiolabeled epidermal growth factor (EGF) to immobilized A-431 target cell membranes coupled to polyvinyl chloride microtiter wells is described. Saturation curves and Scatchard analysis of the data indicate that the observed binding parameters are consistent with those previously reported. Binding capacity of the membranes are approx. 6.6 pmol EGF per mg membrane protein. Kinetics of 125I-EGF binding were slower, however, than reported for binding to membranes in suspension, although binding constants were not greatly different. The high- and low-affinity binding constants for 125I-EGF were calculated to be approximately 1 · 1012 M?1 and 2.5 · 109 M?1, respectively. Application of this technique in a competitive binding assay requires no more than 2.5 μg of membrane protein per assay, is essentially complete after 60 min, and facilitates screening of a large number of samples in a short time. Therefore, this will assist in the evaluation and quantitation of EGF and EGF-related transforming growth factor activity in physiological fluids. This technique may also be applied to analyses of other hormone-receptor systems.  相似文献   

16.
Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways.  相似文献   

17.
目的探讨表皮生长因子受体(epidermal growth factor receptor,EGFR)在肺腺癌细胞中的表达及与细胞发生胶原化的相关性。方法从胸水中提取肺腺癌细胞为研究对象,以32例良性胸水中的增生上皮细胞、炎性细胞为对照,采用免疫细胞化学方法检测细胞中EGFR、E钙粘素蛋白、Vimentin、TTF-1和胶原蛋白亚型I的表达。Masson染色方法检测胶原纤维表达。结果78例胸水标本中,EGFR在肺腺癌细胞中的阳性率为79.5%,胶原蛋白亚型I为32.1%,Masson染色的阳性率为70.5%,明显高于对照组且EGFR和Masson染色的阳性表达结果的相关性具有统计学意义(P〈0.01)。结论EG—FR在肺腺癌细胞中阳性表达,可能与细胞内基质胶原蛋白形成有关。  相似文献   

18.
Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6-1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7-1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38-56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli.  相似文献   

19.
Nuclear localization of multiple receptor-tyrosine kinases (RTKs), such as EGF receptor (EGFR), ErbB-2, FGF receptor (FGFR), and many others, has been reported by several groups. We previously showed that cell surface EGFR is trafficked to the nucleus through a retrograde pathway from the Golgi to the endoplasmic reticulum (ER) and that EGFR is then translocated to the inner nuclear membrane (INM) through the INTERNET (integral trafficking from the ER to the nuclear envelope transport) pathway. However, the nuclear trafficking mechanisms of other membrane RTKs, apart from EGFR, remain unclear. The purpose of this study was to compare the nuclear transport of EGFR family proteins with that of FGFR-1. Interestingly, we found that digitonin permeabilization, which selectively releases soluble nuclear transporters from the cytoplasm and has been shown to inhibit nuclear transport of FGFR-1, had no effects on EGFR nuclear transport, raising the possibility that EGFR and FGFR-1 use different pathways to be translocated into the nucleus. Using the subnuclear fractionation assay, we further demonstrated that biotinylated cell surface ErbB-2, but not FGFR-1, is targeted to the INM, associating with Sec61β in the INM, similar to the nuclear trafficking of EGFR. Thus, ErbB-2, but not FGFR-1, shows a similar trafficking pathway to EGFR for translocation to the nucleus, indicating that at least two different pathways of nuclear transport exist for cell surface receptors. This finding provides a new direction for investigating the trafficking mechanisms of various nuclear RTKs.  相似文献   

20.
The rat pheochromocytoma clone PC12 responds to nerve growth factor through the expression of a number of differentiated neuronal properties. One of the most rapid changes is a large, transient increase in the activity of ornithine decarboxylase. These cells also show an increase in ornithine decarboxylase activity in response to the mitogen, epidermal growth factor, but do not respond morphologically as they do to nerve growth factor. Specific, high-affinity epidermal growth factor receptors are present on the cells. When the cells are differentiated with nerve growth factor, the response to epidermal growth factor is markedly diminished and there is a marked reduction in the binding of epidermal growth factor to the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号