首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents an approximate solution method for the infinite-horizon nonlinear time-delay optimal control problem. A variational iteration method (VIM) is applied to design feedforward and feedback optimal controllers. By using the VIM, the original optimal control is transformed into a sequence of nonhomogeneous linear two-point boundary value problems (TPBVPs). The existence and uniqueness of the optimal control law are proved. The optimal control law obtained consists of an accurate linear feedback term and a nonlinear compensation term which is the limit of an adjoint vector sequence. The feedback term is determined by solving Riccati matrix differential equation. By using the finite-step iteration of a nonlinear compensation sequence, we can obtain a suboptimal control law. Simulation results demonstrate the validity and applicability of the VIM.  相似文献   

2.
《国际计算机数学杂志》2012,89(5):1042-1050
In this article, He's variational iteration method has been applied to find the optimal control of linear systems, approximately. Numerical results are given for several test examples involving scalar and second-order systems to demonstrate the applicability and efficiency of the method.  相似文献   

3.
研究线性时滞系统最优控制的前馈反馈近似设计问题.基于Taylor级数法,将系统的二次型最优控制问题转化为线性代数方程组的求解问题,给出了系统前馈反馈次优控制律的存在唯一性条件和Taylor级数表示形式.仿真算例验证了方法的有效性.  相似文献   

4.
The Pontryagin Maximum Principle is one of the most important results in optimal control, and provides necessary conditions for optimality in the form of a mixed initial/terminal boundary condition on a pair of differential equations for the system state and its conjugate costate. Unfortunately, this mixed boundary value problem is usually difficult to solve, since the Pontryagin Maximum Principle does not give any information on the initial value of the costate. In this paper, we explore an optimal control problem with linear and convex structure and derive the associated dual optimization problem using convex duality, which is often much easier to solve than the original optimal control problem. We present that the solution to the dual optimization problem supplements the necessary conditions of the Pontryagin Maximum Principle, and elaborate the procedure of constructing the optimal control and its corresponding state trajectory in terms of the solution to the dual problem.  相似文献   

5.
In this paper, a new two-step iterative method called the two-step parameterized (TSP) iteration method for a class of complex symmetric linear systems is developed. We investigate its convergence conditions and derive the quasi-optimal parameters which minimize the upper bound of the spectral radius of the iteration matrix of the TSP iteration method. Meanwhile, some more practical ways to choose iteration parameters for the TSP iteration method are proposed. Furthermore, comparisons of the TSP iteration method with some existing ones are given, which show that the upper bound of the spectral radius of the TSP iteration method is smaller than those of the modified Hermitian and skew-Hermitian splitting (MHSS), the preconditioned MHSS (PMHSS), the combination method of real part and imaginary part (CRI) and the parameterized variant of the fixed-point iteration adding the asymmetric error (PFPAE) iteration methods proposed recently. Inexact version of the TSP iteration (ITSP) method and its convergence properties are also presented. Numerical experiments demonstrate that both TSP and ITSP are effective and robust when they are used either as linear solvers or as matrix splitting preconditioners for the Krylov subspace iteration methods and they have comparable advantages over some known ones for the complex symmetric linear systems.  相似文献   

6.
The suboptimal control of a bilinear system is considered with respect to a quadratic cost criterion. The feedback control is in the space of formal power series on a Hilbert space.  相似文献   

7.
This paper presents an efficient model reduction method for time-delay systems in the time domain. We expand the systems under a Hermite polynomial basis and show that Hermite coefficients of the expansion are determined by a linear equation, thus can be calculated efficiently. Such linear relationship is well taken in the projection methods of model reduction, and reduced models are generated to preserve a desired number of Hermite coefficients in the time domain, in contrast to other existing techniques which aim at approximating the transfer function of time-delay systems in the frequency domain. We also exploit two-sided projections for time-delay systems, leading to a hybrid reduction method which generates reduced models sharing the nice properties both in the time and frequency domains. Two numerical examples illustrate the feasibility and effectiveness of the approach.  相似文献   

8.
The paper describes an approach to deriving interval-valued reliability measures given partial statistical information on the occurrence of failures. We apply methods of optimal control theory, in particular, Pontryagin’s principle of maximum to solve the non-linear optimisation problem and derive the probabilistic interval-valued quantities of interest. It is proven that the optimisation problem can be translated into another problem statement that can be solved on the class of piecewise continuous probability density functions (pdfs). This class often consists of piecewise exponential pdfs which appear as soon as among the constraints there are bounds on a failure rate of a component under consideration. Finding the number of switching points of the piecewise continuous pdfs and their values becomes the focus of the approach described in the paper. Examples are provided.  相似文献   

9.
This paper deals with the iterative learning control (ILC) design for multiple-input multiple-output (MIMO), time-delay systems (TDS). Two feedback ILC schemes are considered using the so-called two-dimensional (2D) analysis approach. It shows that continuous-discrete 2D Roesser systems can be developed to describe the entire learning dynamics of both ILC schemes, based on which necessary and sufficient conditions for their stability can be provided. A numerical example is included to validate the theoretical analysis.  相似文献   

10.
A powerful approach for analyzing the stability of continuous-time switched systems is based on using optimal control theory to characterize the “most unstable” switching law. This reduces the problem of determining stability under arbitrary switching to analyzing stability for the specific “most unstable” switching law. For discrete-time switched systems, the variational approach received considerably less attention. This approach is based on using a first-order necessary optimality condition in the form of a maximum principle (MP), and typically this is not enough to completely characterize the “most unstable” switching law. In this paper, we provide a simple and self-contained derivation of a second-order necessary optimality condition for discrete-time bilinear control systems. This provides new information that cannot be derived using the first-order MP. We demonstrate several applications of this second-order MP to the stability analysis of discrete-time linear switched systems.  相似文献   

11.
This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.  相似文献   

12.
13.
Shengtao Pan  Shouwei Zhao 《Automatica》2008,44(11):2954-2958
This paper discusses the stabilization problem for a class of discrete-time Markovian jump linear systems with time-delayed and impulsive controllers. The delay in the mode signal is assumed to be constant, while that in the system state may be time-varying. First, a hybrid controller with delay and impulses is introduced for the discrete-time stochastic systems. Then, some sufficient conditions are proposed for the design of a hybrid controller such that the closed-loop system is stochastically stable. Finally, a numerical example is provided to illustrate the effectiveness of the proposed result.  相似文献   

14.
In this paper, optimal control problems for multi-stage and continuous-time linear singular systems are both considered. The singular systems are assumed to be regular and impulse-free. First, a recurrence equation is derived according to Bellman's principle of optimality in dynamic programming. Then, by applying the recurrence equation, bang-bang optimal controls for the control problems with linear objective functions subject to two types of multi-stage singular systems are obtained. Second, employing the principle of optimality, a equation of optimality for settling the optimal control problem subject to a class of continuous-time singular systems is proposed. The optimal control problem may become simpler through solving this equation of optimality. Two numerical examples and a dynamic input–output model are presented to show the effectiveness of the results obtained.  相似文献   

15.
对于非线性迭代学习控制问题,提出基于延拓法和修正Newton法的具有全局收敛性的迭代学习控制新方法.由于一般的Newton型迭代学习控制律都是局部收敛的,在实际应用中有很大局限性.为拓宽收敛范围,该方法将延拓法引入迭代学习控制问题,提出基于同伦延拓的新的Newton型迭代学习控制律,使得初始控制可以较为任意的选择.新的迭代学习控制算法将求解过程分成N个子问题,每个子问题由换列修正Newton法利用简单的递推公式解出.本文给出算法收敛的充分条件,证明了算法的全局收敛性.该算法对于非线性系统迭代学习控制具有全局收敛和计算简单的优点.  相似文献   

16.
In this article, using singular perturbation theory and adaptive dynamic programming (ADP) approach, an adaptive composite suboptimal control method is proposed for linear singularly perturbed systems (SPSs) with unknown slow dynamics. First, the system is decomposed into fast‐ and slow‐subsystems and the original optimal control problem is reduced to two subproblems in different time‐scales. Afterward, the fast subproblem is solved based on the known model of the fast‐subsystem and a fast optimal control law is designed by solving the algebraic Riccati equation corresponding to the fast‐subsystem. Then, the slow subproblem is reformulated by introducing a system transformation for the slow‐subsystem. An online learning algorithm is proposed to design a slow optimal control law by using the information of the original system state in the framework of ADP. As a result, the obtained fast and slow optimal control laws constitute the adaptive composite suboptimal control law for the original SPSs. Furthermore, convergence of the learning algorithm, suboptimality of the adaptive composite suboptimal control law and stability of the whole closed‐loop system are analyzed by singular perturbation theory. Finally, a numerical example is given to show the feasibility and effectiveness of the proposed methods.  相似文献   

17.
An eigenvalue based approach for the stabilization of linear neutral functional differential equations is presented, which extends the recently developed continuous pole placement method for delay equations of retarded type. The approach consists of two steps. First the stability of the associated difference equation is determined and a procedure is applied to compute the supremum of the real parts of its characteristic roots, which corresponds to computing the radius of the essential spectrum of the solution operator of the neutral equation. No restrictions are made on the dimension of the system and the number of delays. Also the effect of small delay perturbations is explicitly taken into account. As a result of this first step the stabilization problem of the neutral equation is reduced to a problem involving only a finite number of characteristic roots. As a second step, stabilization is achieved by shifting the rightmost or unstable characteristic roots to the left half plane in a quasi-continuous way, by applying small changes to the controller parameters, and meanwhile monitoring other characteristic roots with a large real part. A numerical example is presented.  相似文献   

18.
19.
Observer-based adaptive control for uncertain time-delay systems   总被引:1,自引:0,他引:1  
In this paper, we will focus on investigating the observer-based controlling problem of time-delay systems. First, we investigate a class of simple time-delay systems. The corresponding adaptive observer and controller are designed, which are both independent of the time-delays. Based on Lyapunov stability theory, we prove that the closed-loop system is asymptotically stable. Next we further consider the interconnected time-delay system case. The corresponding adaptive observer and controller are designed, we prove that the resulting closed-loop system is also asymptotically stable. Simulations on controlling time-delay systems and interconnected systems are investigated, and the results show that the designed controllers are feasible and efficient.  相似文献   

20.
针对一类线性广义系统,研究其P型迭代学习控制在离散频域中的收敛性态。在离散频域中,对广义系统进行奇异值分解后,利用傅里叶级数系数的性质和离散的Parseval能量等式,推演了一阶P型迭代学习控制律跟踪误差的离散能量频谱的递归关系和特性,获得了学习控制律收敛的充分条件;讨论了二阶P型迭代学习控制律的收敛条件。仿真实验验证了理论的正确性和学习律的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号