首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We seek to evaluate the efficiency of hybrid transform/ DPCM interframe image coding relative to an optimal scheme that minimizes the mean-squared error in encoding a stationary Gaussian image sequence. The stationary assumption leads us to use the asymptotically optimal discrete Fourier transform (DFT) on the full frame of an image. We encode an actual image sequence with full-frame DFT/DPCM at several rates and compare it to previous interframe coding results with the same sequence. We also encode a single frame at these same rates using a full-frame DFT to demonstrate the inherent coding gains of interframe transform DPCM over intraframe coding. We then generate a pseudorandom image sequence with precise Gauss-Markov statistics and encode it by hybrid full-frame DFT/DPCM at various rates. We compare the signal-to-noise ratios (SNR's) of these reconstructions to the optimal ones calculated from the rate-distortion function. We conclude that in a medium rate range below 1 bit/pel/frame where reconstructions for hybrid transform/ DPCM may be unsatisfactory, there is enough margin for improvement to consider more sophisticated coding schemes.  相似文献   

2.
We present an analysis under the iterative decoding of coset low-density parity-check (LDPC) codes over GF(q), designed for use over arbitrary discrete-memoryless channels (particularly nonbinary and asymmetric channels). We use a random- coset analysis to produce an effect that is similar to output symmetry with binary channels. We show that the random selection of the nonzero elements of the GF(q) parity-check matrix induces a permutation-invariance property on the densities of the decoder messages, which simplifies their analysis and approximation. We generalize several properties, including symmetry and stability from the analysis of binary LDPC codes. We show that under a Gaussian approximation, the entire q-1-dimensional distribution of the vector messages is described by a single scalar parameter (like the distributions of binary LDPC messages). We apply this property to develop extrinsic information transfer (EXIT) charts for our codes. We use appropriately designed signal constellations to obtain substantial shaping gains. Simulation results indicate that our codes outperform multilevel codes at short block lengths. We also present simulation results for the additive white Gaussian noise (AWGN) channel, including results within 0.56 dB of the unrestricted Shannon limit (i.e., not restricted to any signal constellation) at a spectral efficiency of 6 bits/s/Hz.  相似文献   

3.
We consider the transmission of a Reed–Solomon (RS) code over a binary modulated time-correlated flat Rician fading channel with hard-decision demodulation. We define a binary packet (symbol) error sequence that indicates whether an RS symbol is successfully transmitted across the discrete (fading) channel whose input enters the modulator and whose output exits the demodulator. We then approximate the packet error sequence of the discrete channel (DC) using the recently developed queue-based channel (QBC), which is a simple finite-state Markov channel model with $M$th-order Markovian additive noise. In other words, we use the QBC to model the binary DC at the packet level. We propose a general framework for determining the probability of codeword error (PCE) for QBC models. We evaluate the modeling accuracy by comparing the simulated PCE for the DC with the numerically evaluated PCE for the QBC. Modeling results identify accurate low-order QBC models for a wide range of fading conditions and reveal that modeling the DC at the packet level is an efficient tool for nonbinary coding performance evaluation over binary channels with memory.   相似文献   

4.
Explicit construction of families of LDPC codes with no 4-cycles   总被引:1,自引:0,他引:1  
Low-density parity-check (LDPC) codes are serious contenders to turbo codes in terms of decoding performance. One of the main problems is to give an explicit construction of such codes whose Tanner graphs have known girth. For a prime power q and m/spl ges/2, Lazebnik and Ustimenko construct a q-regular bipartite graph D(m,q) on 2q/sup m/ vertices, which has girth at least 2/spl lceil/m/2/spl rceil/+4. We regard these graphs as Tanner graphs of binary codes LU(m,q). We can determine the dimension and minimum weight of LU(2,q), and show that the weight of its minimum stopping set is at least q+2 for q odd and exactly q+2 for q even. We know that D(2,q) has girth 6 and diameter 4, whereas D(3,q) has girth 8 and diameter 6. We prove that for an odd prime p, LU(3,p) is a [p/sup 3/,k] code with k/spl ges/(p/sup 3/-2p/sup 2/+3p-2)/2. We show that the minimum weight and the weight of the minimum stopping set of LU(3,q) are at least 2q and they are exactly 2q for many LU(3,q) codes. We find some interesting LDPC codes by our partial row construction. We also give simulation results for some of our codes.  相似文献   

5.
We propose a novel method for image reconstruction from nonuniform samples with no constraints on their locations. We adopt a variational approach where the reconstruction is formulated as the minimizer of a cost that is a weighted sum of two terms: (1) the sum of squared errors at the specified points and (2) a quadratic functional that penalizes the lack of smoothness. We search for a solution that is a uniform spline and show how it can be determined by solving a large, sparse system of linear equations. We interpret the solution of our approach as an approximation of the analytical solution that involves radial basis functions and demonstrate the computational advantages of our approach. Using the two-scale relation for B-splines, we derive an algebraic relation that links together the linear systems of equations specifying reconstructions at different levels of resolution. We use this relation to develop a fast multigrid algorithm. We demonstrate the effectiveness of our approach on some image reconstruction examples.  相似文献   

6.
The integrated clock and data recovery (CDR) circuit is a key element for broad-band optical communication systems at 40 Gb/s. We report a 40-Gb/s CDR fabricated in indium-phosphide heterojunction bipolar transistor (InP HBT) technology using a robust architecture of a phase-locked loop (PLL) with a digital early-late phase detector. The faster InP HBT technology allows the digital phase detector to operate at the full data rate of 40 Gb/s. This, in turn, reduces the circuit complexity (transistor count) and the voltage-controlled oscillator (VCO) requirements. The IC includes an on-chip LC VCO, on-chip clock dividers to drive an external demultiplexer, and low-frequency PLL control loop and on-chip limiting amplifier buffers for the data and clock I/O. To our knowledge, this is the first demonstration of a mixed-signal IC operating at the clock rate of 40 GHz. We also describe the chip architecture and measurement results.  相似文献   

7.
Video-on-demand over ATM: constant-rate transmission and transport   总被引:5,自引:0,他引:5  
We introduce a specific transport and transmission scheme for video-on-demand (VoD) called constant-rate transmission and transport (CRTT). CRTT establishes a constant bit-rate (CBR) virtual channel between the video provider and the viewer's set-top box (STB) and then transmits cells from the provider into this channel at a constant rate. Since we assume that the number of cells in a frame is variable, CRTT requires that some number of cells be built up in an STB buffer before the commencement of playback. The build up, cell transmission rate, and the set-top memory size must be chosen so that there is no starvation or overflow at the STB. We develop fundamental relationships between these parameters for viable CRTT. We then apply the theory to an MPEG encoding of Star Wars and find that the minimal STB memory far CRTT is 23 Mbytes. We also consider varying the constant rate over a small number of intervals. We find, for example, that for Star Wars approximately 2 Mbytes of set-top memory suffices with 32 constant-rate intervals  相似文献   

8.
Tomlinson-Harashima precoding with partial channel knowledge   总被引:1,自引:0,他引:1  
We consider minimum mean-square error Tomlinson-Harashima (MMSE-TH) precoding for time-varying frequency-selective channels. We assume that the receiver estimates the channel and sends the channel state information (CSI) estimate to the transmitter through a lossless feedback channel that introduces a certain delay. Thus, the CSI mismatch at the receiver is due to estimation errors, while the CSI mismatch at the transmitter is due to both estimation errors and channel time variations. We exploit a priori statistical channel knowledge, and we derive an optimal TH precoder, adopting a Bayesian approach. We use simulations to compare the performance of the so-derived TH precoder with that of the same-complexity MMSE decision-feedback equalizer (DFE). We observe that for low signal-to-noise ratios (SNRs) and sufficiently slow channel time variations, the optimal TH precoder outperforms the DFE, while at high SNR, the opposite happens.  相似文献   

9.
We introduce the concept of a light-tree in a wavelength-routed optical network. A light-tree is a point-to-multipoint generalization of a lightpath. A lightpath is a point-to-point all-optical wavelength channel connecting a transmitter at a source node to a receiver at a destination node. Lightpath communication can significantly reduce the number of hops (or lightpaths) a packet has to traverse; and this reduction can, in turn, significantly improve the network's throughput. We extend the lightpath concept by incorporating an optical multicasting capability at the routing nodes in order to increase the logical connectivity of the network and further decrease its hop distance. We refer to such a point-to-multipoint extension as a light-tree. Light-trees can not only provide improved performance for unicast traffic, but they naturally can better support multicast traffic and broadcast traffic. In this study, we shall concentrate on the application and advantages of light-trees to unicast and broadcast traffic. We formulate the light-tree-based virtual topology design problem as an optimization problem with one of two possible objective functions: for a given traffic matrix, (i) minimize the network-wide average packet hop distance, or (ii) minimize the total number of transceivers in the network. We demonstrate that an optimum light-tree-based virtual topology has clear advantages over an optimum lightpath-based virtual topology with respect to the above two objectives  相似文献   

10.
The total dose effect of an AD678 with a BiMOS process is studied.We investigate the performance degradation of the device in different bias states and at several dose rates.The results show that an AD678 can endure 3 krad(Si) at low dose rate and 5 krad(Si) at a high dose rate for static bias.The sensitive parameters to the bias states also differ distinctly.We find that the degradation is more serious on static bias.The underlying mechanisms are discussed in detail.  相似文献   

11.
We consider the problem of lossy joint source-channel coding in a communication system where the encoder has access to channel state information (CSI) and the decoder has access to side information that is correlated to the source. This configuration combines the Wyner-Ziv (1976) model of pure lossy source coding with side information at the decoder and the Shannon/Gel'fand-Pinsker (1958, 1980) model of pure channel coding with CSI at the encoder. We prove a separation theorem for this communication system, which asserts that there is no loss in asymptotic optimality in applying, first, an optimal Wyner-Ziv source code and, then, an optimal Gel'fand-Pinsker channel code. We then derive conditions for the optimality of a symbol-by-symbol (scalar) source-channel code, and demonstrate situations where these conditions are met. Finally, we discuss a few practical applications, including overlaid communication where the model under discussion is useful.  相似文献   

12.
We focus on the uplink and derive the joint probability density function of the signal to interference (+noise) ratios (SIRs) at the base stations (BSs) for the general case of n BSs supporting a mobile in soft handoff, each using maximal ratio combining with m-fold diversity. We then calculate the correlations between the SIRs for some example cases. The insights gained here lead to a fresh approach to the estimation of the block error rate (BLER) at the output of the frame selector (FS), which is the usual measure of quality of service in UMTS. For low specified BLER (e.g., 0.1%), the method of counting cyclic redundancy code errors requires an impractically large number of data blocks for an accurate estimate of BLER. We propose to estimate the BLER at the FS output based on measurements performed by the individual BSs. The initial setting of the target SIR in the outer loop power control can then be selected in the same way in order to expedite BLER convergence to the desired setting.  相似文献   

13.
We study an approach to quality-of-service (QoS) that offers end-users the choice between two service classes defined according to their level of transmission protection. The fully protected (FP) class offers end-users a guarantee of survivability in the case of a single-link failure; all FP traffic is protected using a 1:1 protection scheme at the wavelength-division multiplexing (WDM) layer. The best effort protected (BEP) class is not protected; instead restoration at the IP layer is provided. The FP service class mimics what Internet users receive today. The BEP traffic is designed to run over the large amounts of unused bandwidth that exist in today's Internet. The goal is to increase the load carried on backbone networks without reducing the QoS received by existing customers. To support two such services, we have to solve two problems: the off-line problem of mapping logical links to pairs of disjoint fiber paths, and an on-line scheduling problem for differentiating packets from two classes at the IP layer. We provide an algorithm based on a Tabu Search meta-heuristic to solve the mapping problem, and a simple but efficient scheduler based on weighted fair queueing for service differentiation at the IP layer. We consider numerous requirements that carriers face and illustrate the tradeoffs they induce. We demonstrate that we can successfully increase the total network load by a factor between three and ten and still meet all the carrier requirements.  相似文献   

14.
We present an analysis for both oblivious and adaptive routing in regular, all-optical networks with wavelength translation. Our approach is simple, computationally inexpensive, accurate for both low and high network loads, and the first to analyze adaptive routing with wavelength translation in wavelength division multiplexed (WDM) networks while also providing a simpler formulation of oblivious routing with wavelength translation. Unlike some previous analyses which use the link independence blocking assumption and the call dropping (loss) model (where blocked calls are cleared), we account for the dependence between the acquisition of wavelengths on successive links of a session's path and use a lossless model (where blocked calls are retried at a later time). We show that the throughput per wavelength increases superlinearly (as expected) as we increase the number of wavelengths per link, due both to additional capacity and more efficient use of this capacity; however, the extent of this superlinear increase in throughput saturates rather quickly to a linear increase. We also examine the effect that adaptive routing can have on performance. The analytical methodology that we develop can be applied to any vertex and edge symmetric topology, and with modifications, to any vertex symmetric (but not necessarily edge symmetric) topology. We find that, for the topologies we examine, providing at most one alternate link at every hop gives a per wavelength throughput that is close to that achieved by oblivious routing with twice the number of wavelengths per link. This suggests some interesting possibilities for network provisioning in an all-optical network. We verify the accuracy of our analysis for both oblivious and adaptive routing via simulations for the torus and hypercube networks  相似文献   

15.
Providing wireless high-speed packet data services for Web browsing and streaming multimedia applications will be a key feature in future code-division multiple-access (CDMA) systems. We study down-link CDMA schemes for providing such services using multiple antennas at the transmitter and receiver. We propose a generalization of the point-to-point narrowband Bell Labs layered space-time (BLAST) system to a wideband multiple access system which simultaneously supports multiple users through code spreading. We discuss transmission options for achieving transmit diversity and spatial separation and introduce a generalization of the vertical BLAST detector for CDMA signals. Using link level simulations, we determine the bit-error rates versus signal-to-interference ratio of the various transmitter options. We then describe a novel technique for determining the system spectral efficiency (measured in bits per second per Hertz per cell sector) by incorporating the link level results with system level outage simulations. Using four antennas at the transmitter and eight antennas at each receiver, the system can support multiple receivers at 16 times the voice rate, resulting in a system spectral efficiency an order magnitude higher than a conventional single-antenna voice system  相似文献   

16.
We develop a methodology for numerical optimization of fiber Bragg grating frequency response to maximize the achievable capacity of a spectral-amplitude-coded optical code-division multiple-access (SAC-OCDMA) system. The optimal encoders are realized, and we experimentally demonstrate an incoherent SAC-OCDMA system with seven simultaneous users. We report a bit error rate (BER) of 2.7times10-8 at 622 Mb/s for a fully loaded network (seven users) using a 9.6-nm optical band. We achieve error-free transmission (BER<1times10-9) for up to five simultaneous users  相似文献   

17.
We constructed a gain-shifted dual-wavelength-pumped (1.05/1.56 μm) thulium doped fiber amplifier (TDFA) for wavelength-division-multiplexing (WDM) signals in the 1.48-1.51-μm, wavelength region. We obtained a gain of larger than 20 dB and a noise figure of less than 7 dB in the range from 1478 to 1505 nm. Amplifier saturated output power was +20.1 dBm with an optical-to-optical conversion efficiency of 9.1% for 12-channel WDM signals. We also obtained a successful bit error rate performance for signals modulated at 10 Gb/s when the gain-shifted TDFA was used in an optical preamplifier configuration. These results confirm the feasibility of using the gain-shifted TDFA as both a booster and an optical preamplifier in WDM networks  相似文献   

18.
We report on the design and evaluation of a 40-80-GHz (40/80-GHz) high-power wide-band fixed-tuned balanced doubler. The active device is a single GaAs chip comprising a linear array of six planar Schottky varactors. The varactors and a quartz microstrip circuit are embedded in a split waveguide block. We have achieved a measured 3-dB fixed-tuned bandwidth of 17% and measured flange-to-flange peak efficiency of 48% at an input-power level of 200 mW. The doubler operates at near-peak efficiency (45%) at an input power of 250 mW. We have cooled the block to 14 K and achieved an efficiency of 61% at an input-power level of 175 mW and an efficiency of 48% at an input-power level of 365 mW. Emphasis has been placed on making the design easy to fabricate and scalable to higher frequencies  相似文献   

19.
We develop a simulation tool for an all-optical gain-clamped erbium-doped fiber amplifier (GC-EDFA) based on an amplified spontaneous emission (ASE) reflector and thoroughly verify its validity by comparing simulation data with experimental ones. We carry out simulation work as changing conditions like reflection ratio and bandwidth of the ASE reflector, EDF length, and pump power. From this work, we have an exact understanding about the gain clamping principle that a reflected ASE acts like an intensity reservoir against input signal intensity variation. In general, as a reflected ASE power becomes higher, both a dynamic range and a noise figure (NF) increase; on the other hand, a clamped gain value decreases. The ASE reflector-based gain clamping scheme can be used for EDFAs with low NF characteristics at small input signal range in case a reflected ASE power is set at a level much lower than powers required for normal gain clamping function.  相似文献   

20.
Dirty-paper coding versus TDMA for MIMO Broadcast channels   总被引:6,自引:0,他引:6  
We compare the capacity of dirty-paper coding (DPC) to that of time-division multiple access (TDMA) for a multiple-antenna (multiple-input multiple-output (MIMO)) Gaussian broadcast channel (BC). We find that the sum-rate capacity (achievable using DPC) of the multiple-antenna BC is at most min(M,K) times the largest single-user capacity (i.e., the TDMA sum-rate) in the system, where M is the number of transmit antennas and K is the number of receivers. This result is independent of the number of receive antennas and the channel gain matrix, and is valid at all signal-to-noise ratios (SNRs). We investigate the tightness of this bound in a time-varying channel (assuming perfect channel knowledge at receivers and transmitters) where the channel experiences uncorrelated Rayleigh fading and in some situations we find that the dirty paper gain is upper-bounded by the ratio of transmit-to-receive antennas. We also show that min(M,K) upper-bounds the sum-rate gain of successive decoding over TDMA for the uplink channel, where M is the number of receive antennas at the base station and K is the number of transmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号