首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GNSS观测站环境变化对数据质量的影响   总被引:1,自引:0,他引:1  
针对周围有树遮挡的GNSS观测站数据质量检测问题,该文利用TEQC软件分析多期观测资料每个观测时段的多路径效应MP1/MP2、数据有效率及周跳等指标的变化,结合站点实际照片及观测季节等分析变化原因。结果表明:数据质量随周围树的遮挡情况不同而变化。遮挡增强时,数据质量变差;冬季树落叶后,MP1/MP2相应变小,数据有效率提高。而对位于周围植被受季节影响不大地区的测站,各项指标变化也不是很大。采用扼流圈天线可有效减少周跳。建(构)筑物的遮挡对卫星信号接收影响明显,数据有效率低,解算的速度场误差大。环境变差的观测站通过数据后处理,不能完全消除多路径效应和/或周跳的影响。以上结论可为GNSS选建站、观测、数据处理及行业标准的制定等提供参考。  相似文献   

2.
何书镜 《地理空间信息》2013,11(2):122-124,129
探讨了GNSS接收机天线多路径效应的计算和分析方法,分别运用由多路径计算原理编制的数据分析软件和TEQC软件处理整体式GNSS接收机获取的数据,并进行对比分析,其结果说明多路径效应的大小与高度角存在线性关系。在实际数据预处理中,可通过分析软件代替TEQC,简单方便地获得站点的多路径信息,对站点的数据评定提供有效的质量信息。  相似文献   

3.
A. El-Mowafy 《GPS Solutions》2014,18(4):553-561
A method is presented for real-time validation of GNSS measurements of a single receiver, where data from each satellite are independently processed. A geometry-free observation model is used with a reparameterized form of the unknowns to overcome rank deficiency of the model. The ionosphere error and non-constant biases such as multipath are assumed changing relatively smoothly as a function of time. Data validation and detection of errors are based on statistical testing of the observation residuals using the detection–identification–adaptation approach. The method is applicable to any GNSS with any number of frequencies. The performance of validation method was evaluated using multi-frequency data from three GNSS (GPS, GLONASS, and Galileo) that span 3 days in a test site at Curtin University, Australia. Performance of the method in detection and identification of outliers in code observations, and detection of cycle slips in phase data were examined. Results show that the success rate vary according to precision of observations and their number as well as size of the errors. The method capability is demonstrated when processing four IOV Galileo satellites in a single-point-positioning mode and in another test by comparing its performance with Bernese software in detection of cycle slips in precise point-positioning processing using GPS data.  相似文献   

4.
在GNSS接收机的实际应用中,多径是影响定位精度的主要因素之一。在车载应用条件下,多径的影响由于快速的多径信道变化而变得更加明显,车载接收机的GNSS信号接收处理部分会受到包含周围运动车辆及其自身结构影响在内的复杂多径干扰。针对接收机的各个组成部分分析了天线设计、多径估计、多频测量、传感器融合等多种可用的多径抑制方法,并根据分析和比较结果指出:信号处理方法、基于导航的方法以及传感器融合方法是实现车载接收机多径消除的首选方法。  相似文献   

5.
提出了一种基于历元间单差观测值的单站单频周跳探测与修复方法。通过假定前一历元为基准站,当前历元为流动站,采用相对定位处理模式获取当前历元观测值的验后单位权中误差,并基于抗差最小二乘获取每颗卫星的观测值残差,对单站单频数据进行周跳探测与修复。通过对实测数据的验证分析表明,按照本文方法可以100%探测周跳发生的历元。并且,当至少4颗卫星未发生周跳时,如发生异常卫星数小于可视卫星数的30%,则在95%以上的情况下可以有效确定异常卫星;当异常卫星过多时,本文方法确定异常卫星的成功率会有所下降。但是,对于探测出发生周跳的异常卫星,本文方法均可100%对其周跳进行修复。  相似文献   

6.
Benefits of the third frequency signal on cycle slip correction   总被引:3,自引:1,他引:2  
Cycle slip detection and correction are important issues when carrier phase observations are used in high-precision GNSS data processing and have, therefore, been intensively investigated. Along with the GNSS modernization, the cycle slip correction (CSC) problem has been raised to deal with more signals from multi-frequencies. We extend the geometry-based approach by integrating time-differenced pseudorange and carrier phase observations to estimate the integer number of triple-frequency cycle slips together with the receiver clock offset, ionospheric delay variations and receiver displacements. The Least-squares AMBiguity Decorrelation Adjustment method can be employed. The benefit of the third frequency observation on the cycle slip estimate is first investigated with simulation tests. The results show that adding the third frequency observation can significantly improve the model strength and that a reliable triple-frequency CSC with a theoretical success rate of higher than 99.9 % can still be achieved, even under the condition that the range or ionosphere delay variation is poorly defined. The performance of triple-frequency CSC is validated with real triple-frequency BDS data since all BDS satellites in orbit are transmitting triple-frequency signals. The results show that the fixing rate of CSC can reach 99.1 % in static precise point positioning (PPP) and 98.8 % in the kinematic case. PPP solutions with cycle slip-uncorrected and cycle slip-corrected data sets are compared to validate the correctness of triple-frequency CSC. The standard deviations of the PPP solution in east, north and vertical component, respectively, can be improved by 31.1, 30.7 and 37.6 % for static, and by 42.0, 53.8 and 39.7 % for kinematic after cycle slips are corrected. The performance of dual- and triple-frequency CSC is also compared. Results show that the performance of dual-frequency CSC is slightly worse than that of triple-frequency CSC. These results demonstrate that the performance of CSC can be significantly improved with triple-frequency observations.  相似文献   

7.
The difficulty to detect and repair cycle slip of carrier phase measurements is a key limit for continuously high accuracy of GNSS positioning and navigation services. We propose an automated cycle slip detection and repair method for data preprocessing of a CORS network. The method jointly uses double-differenced (DD) geometry-free (GF) combination and ionospheric-free observation corrected for the computed geometrical distance (IF-OMC) to estimate the cycle slips in dual-frequency observations. The DD GF combination, which is only affected by the ionospheric residual, can be used to detect cycle slips with high reliability except for special pairs such as (77, 60) on GPS L1/L2 frequencies. The detection principle of the IF-OMC observable is such that there is a large discontinuity related to the previous epoch when cycle slips occur at the present epoch. The disadvantages of these two combinations can be overcome employing the proposed detection method. The cycle slip pair (77, 60) has no effect on the GF combination, while a change of 14.65 m is derived from GPS L1/L2 observations using the IF-OMC algorithm. Using pre-determined station coordinates as precise values, we found that the accuracy of the DD IF-OMC combination was 18 mm for a 200-km CORS baseline. Therefore, cycle slips in dual-frequency observations can be correctly and uniquely determined using DD GF and IF-OMC equations. The proposed method was verified by adding simulated cycle slips in observations collected from the CORS network under a quiet ionosphere and shown to be effective. Moreover, the method was assessed with observations made during intense ionospheric activity, which generated extensive cycle slips. The results show that the algorithm can detect and repair all cycle slips apart from two exceptions relating to long data gaps.  相似文献   

8.
Common choke ring ground planes are known to contribute to undesirable antenna pattern narrowing in the elevation plane which is associated with difficulties of tracking low elevation satellites. Also known is the comparatively narrow frequency bandwidth of the choke grooves structure. As an alternative, using a convex impedance ground plane has been suggested for full-spectrum GNSS applications. With such ground planes a pin structure is utilized instead of choke grooves to allow a frequency bandwidth increase. A semi-spherical shape of the ground plane is shown to provide increased antenna gain for low elevation angles. Theoretical performance estimates along with experimental test data have been provided.  相似文献   

9.
重点对地灾监测方面的方案研究进行了阐述,在构建大数据信息平台的设计方案时,以实现高度自动化的全方位监测功能为导向,依托导航卫星数据接收机和多源传感器,集成构建大数据信息平台的系统解决方案,主要包括扼流圈卫星天线、GNSS数据接收机、MEMS传感器、环境测量单元、防雷区域单元等功能元件的组成、多传感器的系统集成,以及全方位监测的功能实现。按照地灾监测大数据信息平台建设、构建大数据平台关键技术突破及检测数据解算软件功能实现的顺序,完成了GNSS实时监测预警应用网络系统HCmonitor的研发。综合应用多种手段实现地灾监测的功能升级,为解决重大灾害预警提供了新的思路和解决方案,该项成果在甘肃舟曲的灾后重建工程得到应用与推广。  相似文献   

10.
The Global Positioning System (GPS) has become a powerful tool for ionospheric studies. In addition, ionospheric corrections are necessary for the augmentation systems required for Global Navigation Satellite Systems (GNSS) use. Dual-frequency carrier-phase and code-delay GPS observations are combined to obtain ionospheric observables related to the slant total electron content (sTEC) along the satellite-receiver line-of-sight (LoS). This observable is affected by inter-frequency biases [IFB; often called differential code biases (DCB)] due to the transmitting and the receiving hardware. These biases must be estimated and eliminated from the data in order to calibrate the experimental sTEC obtained from GPS observations. Based on the analysis of single differences of the ionospheric observations obtained from pairs of co-located dual-frequency GPS receivers, this research addresses two major issues: (1) assessing the errors translated from the code-delay to the carrier-phase ionospheric observable by the so-called levelling process, applied to reduce carrier-phase ambiguities from the data; and (2) assessing the short-term stability of receiver IFB. The conclusions achieved are: (1) the levelled carrier-phase ionospheric observable is affected by a systematic error, produced by code-delay multi-path through the levelling procedure; and (2) receiver IFB may experience significant changes during 1 day. The magnitude of both effects depends on the receiver/antenna configuration. Levelling errors found in this research vary from 1.4 total electron content units (TECU) to 5.3 TECU. In addition, intra-day vaiations of code-delay receiver IFB ranging from 1.4 to 8.8 TECU were detected.  相似文献   

11.
Real-time cycle slip detection in triple-frequency GNSS   总被引:7,自引:2,他引:5  
The modernization of the global positioning system and the advent of the European project Galileo will lead to a multifrequency global navigation satellite system (GNSS). The presence of new frequencies introduces more degrees of freedom in the GNSS data combination. We define linear combinations of GNSS observations with the aim to detect and correct cycle slips in real time. In particular, the detection is based on five geometry-free linear combinations used in three cascading steps. Most of the jumps are detected in the first step using three minimum-noise combinations of phase and code observations. The remaining jumps with very small amplitude are detected in the other two steps by means of two-tailored linear combinations of phase observations. Once the epoch of the slip has been detected, its amplitude is estimated using other linear combinations of phase observations. These combinations are defined with the aim of discriminating between the possible combinations of jump amplitudes in the three carriers. The method has been tested on simulated data and 1-second triple-frequency undifferenced GPS data coming from a friendly multipath environment. Results show that the proposed method is able to detect and repair all combinations of cycle slips in the three carriers.  相似文献   

12.
通过研究通用GNSS软件接收机软件的建模方法,提出了一种适用于GPS/Galileo软件接收机的架构设计方法以及一套通用的模块设计方法。为今后实现实时的多模软件接收机打下了基础,而且其中的各类算法模块、处理模块、图形模块具有很强的通用性,可复用于其他接收机系统。软件运行结果达到各项指标要求和具有硬件接收机数字中频信号采样后的所有功能。  相似文献   

13.
Reflections of the GNSS signal around the antenna induce an error in the measurement of the satellite–receiver distance and therefore should be avoided as much as possible. One solution often used to mitigate these reflections is to apply radio frequency (RF) absorbing material to the antenna, its support or its site. Such material could however alter the antenna phase delay and, in turn, alter the position as calculated from the GNSS observations. We explain under which conditions the RF material will or will not alter the antenna phase delay, and hence in which conditions a re-calibration of the antenna is necessary after the installation of absorbing material. Furthermore, rules of thumb are given to install the material in such a way that re-calibration can be avoided. Some basic theory and measurements of the influence of RF material are reviewed. An application to a real life absorber setup similar to one of the International GNSS Service reference stations is then discussed, and the position offset due to the absorbing material is demonstrated. The topics discussed can serve station managers to limit effects of absorbing material and take precautions to avoid a position bias.  相似文献   

14.
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO positions.  相似文献   

15.
We present an assessment of a GPS receiver operational network to produce accurate integrated precipitable water vapour (IPWV) during a two-week field experiment carried out in Central Italy around the city of Rome, where different instruments were operative. This experimental activity provided an excellent opportunity to compare the GPS products with independent measurements provided by ground-based and space-based sensors and to evaluate their quality in terms of absolute accuracy of IPWV, analyzing also the spatial scale of GPS estimates. For instance, the assimilation into Numerical Weather Prediction models of IPWV provided by a GPS network or its exploitation in space geodesy applications to correct tropospheric effects requires an accuracy in the order of 0.1 cm to be ascribed to IPWV observations. In this work, we assessed that the accuracy for GPS IPWV estimates is 0.07 cm. Moreover, this experiment has pointed out strengths and limitations of an operational network for the water vapor estimation, such as a proper receiver distribution to achieve the desired spatial resolution and a coverage of GPS stations in both flat and mountains regions.  相似文献   

16.
王清华 《北京测绘》2020,(2):167-171
对于高精度的GNSS数据处理,特别是当多种品牌的GNSS接收机共同作业时,对天线进行相位中心改正是非常有必要的。当采用TBC处理非天宝类型GNSS接收机数据时,在导入数据时,有时会出现不识别接收机和天线类型的错误或警告。通过修改Rinex格式文件头的接收机及天线类型,使其与TBC软件中接收机及天线配置文件中信息一致,问题得到解决。本文还对此类问题做了一些引申,结语给出了若干条建议。  相似文献   

17.
GNSS数据质量分析   总被引:5,自引:2,他引:3  
GNSS载波相位观测值受观测噪声和接收机钟跳等的影响,其周跳检验量序列随时间发生变化。为构造稳健而又敏感的周跳检验量,需对不同系统的卫星数据质量进行分析,而多路径效应和信噪比则是影响观测数据质量的重要指标。本文重点分析了GPS与BDS卫星数据的多路径效应及信噪比,并提出了一种接收机时钟的钟跳探测方法,即采用双频相位观测值的O-C值,通过消电离层线性组合进行钟跳探测。  相似文献   

18.
Bayesian methods for outliers detection in GNSS time series   总被引:1,自引:0,他引:1  
This article is concerned with the problem of detecting outliers in GNSS time series based on Bayesian statistical theory. Firstly, a new model is proposed to simultaneously detect different types of outliers based on the conception of introducing different types of classification variables corresponding to the different types of outliers; the problem of outlier detection is converted into the computation of the corresponding posterior probabilities, and the algorithm for computing the posterior probabilities based on standard Gibbs sampler is designed. Secondly, we analyze the reasons of masking and swamping about detecting patches of additive outliers intensively; an unmasking Bayesian method for detecting additive outlier patches is proposed based on an adaptive Gibbs sampler. Thirdly, the correctness of the theories and methods proposed above is illustrated by simulated data and then by analyzing real GNSS observations, such as cycle slips detection in carrier phase data. Examples illustrate that the Bayesian methods for outliers detection in GNSS time series proposed by this paper are not only capable of detecting isolated outliers but also capable of detecting additive outlier patches. Furthermore, it can be successfully used to process cycle slips in phase data, which solves the problem of small cycle slips.  相似文献   

19.
GNSS receivers estimate 3D antenna position and receiver clock bias when at least four satellites are tracked. If only three satellites are available, a 2D antenna position solution is still possible. We derive an almost exact algorithm for the determination of two possible antenna positions and the corresponding receiver clock biases based on pseudorange measurements to three GNSS satellites and a height measurement. The two ambiguous solutions exactly reflect the same height measurement. One of the solutions can be eliminated if some prior knowledge of the user position, for example, near the Earth, is available. In general, a less accurate height measurement gives a less accurate 2D GNSS solution, and vice versa. The determination of the receiver antenna position is based upon the intersection of two confocal hyperboloid sheets and the ellipsoid, resulting in a hyperbola along which the user is located. The algorithm is verified by numerical computations.  相似文献   

20.
We further developed a new approach using GNSS reflectometry to determine the leveling connection between a tide gauge and a GNSS antenna. This approach includes the optimization of the unknown receiver bandwidth and the estimation of frequency changes in the signal-to-noise ratio (SNR) oscillation through an extended Kalman filter/smoother algorithm. We also corrected the geometric bending of the GNSS signals due to tropospheric refraction using local meteorological observations. Using 3 weeks of SNR data in Spring Bay, Australia, from a GNSS antenna placed sideways (i.e., ground plane orientated vertically and directed in azimuth toward the sea surface) to improve the SNR interference near the horizon, we obtained mean leveling differences of approximately 5 mm, with an RMS of approximately 3 cm level with respect to the nominal leveling from classical surveying techniques. SNR data from three different receiver manufacturers, coupled to the same antenna, provided similar leveling results. With a second antenna in the usual upright configuration, we obtained mean leveling differences of 1–2 cm and a RMS of about 10 cm. In the upright configuration, the leveling differences may include errors in the GNSS antenna phase center calibration, which are avoided in our technique but not in the classical surveying techniques. These results demonstrate the usefulness of the reflectometry technique to obtain precisely and remotely the leveling between a GNSS antenna and a tide gauge. In addition, this technique can be applied continuously, providing an independent and economical means to monitor the stability of the tide gauge zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号