首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
研究基于Cobra-IV程序,开发了适用于超临界水冷堆燃料组件分析的子通道程序.针对超临界水冷堆慢谱双排组件,进行了稳态计算,获取了相关组件热工水力参数.在此基础上,针对单一通道进行了瞬态计算,分析了燃料棒线功率变化和冷却剂流量变化条件下,超临界水冷堆燃料组件的流动和传热的动态响应,为超临界水冷堆组件的优化设计提供了参考.  相似文献   

2.
首先利用先进子通道分析程序(ATHAS)对超临界水冷堆(CGN-SCWR)的双排棒组件进行子通道分析,以考察燃料棒包壳温度等热工参数是否达到安全要求。根据分析结果结合子通道水力直径和冷却剂出口温度,选取一些典型子通道的热工参数结果做详细比对,了解组件中不同类型子通道内的热工参数变化对组件性能的影响。另外,对子通道计算采用的湍流交混系数、轴向摩擦系数和传热关系式进行敏感性分析,以了解经验关系式对计算结果的影响。结果显示:所有热工参数结果均达到设计要求,包壳最高温度为685.3℃,且不同传热关系式的选择对包壳温度的影响明显,最大温差达到了41.3℃。  相似文献   

3.
与目前的轻水堆相比较,由于超临界水冷动力反应堆(SCPR)的热效率高、反应堆系统简单,预计将降低发电成本高热效率通过超临界压力水冷却来获得、如果冷却剂流体在燃料组件中的分布是非均匀的.由于冷却剂温度提高、冷却剂密度的变化而出现大的流量偏移和传热系数降低的复合效应,燃料包壳的表面温度会局部升高:因此,SCPR燃料组件设计采用基于沸水堆的SILFEED的子通道分析程序SCPR燃料组件具有许多正方形水棒、燃料棒被布置在这些水捧周围。燃料棒的间距和直径分别为11.2nun和10.2mm。由于冷却剂流体在燃料组件内的分布主要取决于燃料棒和水棒之间的间隙宽度、对适当的间隙宽度进行了研究。子通道分析表明,在间隙宽度为1.0mm时,冷却剂流量分布是均匀的,最高的燃料包壳表面温度低于600℃、在设计中提高了燃料包壳的温度裕度。  相似文献   

4.
环形元件超临界水冷堆CSR1000A初步概念设计   总被引:1,自引:1,他引:0  
在压水堆环形燃料元件基础上,提出了一种新型适用于超临界水冷堆(SCWR)的环形元件。该环形元件具有大几何尺寸、采用UO2颗粒燃料、内包壳表面涂隔热层等特点。利用163盒由61个改进型环形元件及组件盒构成的六角形燃料组件,设计了百万千瓦环形元件超临界水冷堆CSR1000A,并给出了卸料燃耗、冷却剂出口温度及最大燃料包壳温度等关键参数。  相似文献   

5.
在超临界水冷堆预概念设计中,组件设计是十分重要的,将影响堆芯性能。超临界水冷堆中水密度变化剧烈的特性要求必须进行核热耦合分析。从中子学及热工性能角度,使用三维核热耦合程序对环形燃料组件进行了优化设计。应用中子学计算程序FENNEL-N对环形燃料组件进行三维扩散计算,可得到组件内单棒功率分布,应用热工计算程序SUBSC对组件进行子通道分析。在计算过程中,分析了燃料棒间距及燃料棒与组件壁盒之间的间隙对组件性能的影响。计算结果显示,增大棒间距和棒壁间隙能提高组件kinf,但会增大组件内功率峰因子;子通道受热不均匀性对组件热工性能影响较大,通过加入定位格架的方式能展平冷却剂出口温度,降低最大包壳温度。对环形燃料组件的安全分析表明,从中子学角度该组件是安全的。  相似文献   

6.
超临界水冷堆MOX燃料特性分析   总被引:2,自引:0,他引:2  
针对超临界水冷堆组件,采用不同Pu含量的MOX燃料进行组件计算,得到不同燃料条件下的燃耗深度、功率分布因子、慢化剂温度反应性系数等结果,并对比分析在超临界水冷堆中应用MOX燃料与应用UO2燃料对组件性能的影响,以及不同Pu含量MOX燃料间的性能区别。分析结果表明,在超临界水冷堆设计中,应用MOX燃料与应用UO2燃料有相似的功率分布,应用MOX燃料可以增加燃耗深度,并有良好的慢化剂温度反应性系数。经过合理设计的MOX燃料可较好应用于超临界水冷堆中,且产生更好的性能。  相似文献   

7.
超临界水堆堆芯新型燃料组件设计分析   总被引:1,自引:0,他引:1  
超临界水堆(SCWR)作为六种第四代未来堆型中唯一的水冷反应堆,具有良好的经济性与技术延续性.本文采用最新开发的热工-物理耦合计算程序对超临界水堆方形燃料组件进行稳态热工与中子物理耦合分析,提出一种新型的超临界水堆堆芯燃料组件设计.现有单排组件设计与新型双排燃料组件设计的计算结果表明,双排组件具有功率径向分布均匀,包壳...  相似文献   

8.
提出了超临界水冷混合堆快谱区多层燃料组件设计方案.应用MCNP程序为该组件建立计算模型,并进行了相应的物理计算;同时运用子通道分析程序STAFAS对多层燃料组件子通道进行了初步的稳态热工分析.计算结果表明:超临界水冷混合堆快谱区多层燃料组件燃料转换比超过1.0,并且获得负的冷却剂空泡反应性系数;燃料包壳表面最高温度约为595℃,低于设计准则规定的上限值,同时组件各子通道出口冷却剂温度均匀性较好.通过对燃料棒径敏感性分析可知,较大棒径组件燃料转换比较大,但也会导致热通道包壳表面温度峰值升高.  相似文献   

9.
超临界水冷堆CSR1000堆芯初步概念设计   总被引:10,自引:7,他引:3  
在借鉴先进沸水堆、压水堆以及现有超临界水冷堆(SCWR)设计技术基础上,提出百万千瓦级超临界水冷堆设计概念CSR1000。采用单水棒、组合式方形燃料组件,在保证燃料棒均匀慢化的同时简化组件结构;堆芯冷却剂流动方案为双流程,以提高堆芯流动稳定性及平均出口温度;堆芯采用157盒燃料组件、高泄漏换料模式。通过堆芯概念设计方案评价,给出了循环长度、卸料燃耗、冷却剂出口温度、最大燃料包壳温度及最大线功率密度等关键参数。  相似文献   

10.
超临界水冷堆热效率高,其预期的燃料经济性高。本文将超临界水冷堆CSR1000与目前主流的压水堆、沸水堆进行燃料管理经济性比较,给出了超临界水冷堆燃料经济性更低的意外结论。因此超临界水冷堆能否真的成为第4代核能系统还有待商榷。  相似文献   

11.
超临界水冷堆燃料组件多采用绕肋进行自定位,绕肋对于组件热工水力特性的影响较为复杂。在超临界子通道程序ATHAS的基础上改进绕肋处理模块,并基于计算流体力学(CFD)工具对绕肋模型进行验证。改进后的子通道分析程序整体上能够反映出不同通道的变化趋势,对绕肋的几何参数变化也能做出较为合理的响应,证明绕肋模型正确;但在部分通道的预测上仍需要进一步改进。  相似文献   

12.
超临界水冷堆堆芯子通道稳态热工分析   总被引:1,自引:1,他引:1  
刘晓晶  程旭 《核动力工程》2007,28(5):18-21,58
超临界水冷堆(SCWR)作为6种第四代未来堆型中唯一的水冷堆,冷却剂出口温度可达500℃,具有良好的经济性.本文采用改进的COBRA-IV程序对超临界水冷堆方形组件子通道进行稳态热工分析.对计算结果进行分析可知:减小慢化剂通道中给水质量流量份额和加大慢化剂通道与相邻子通道之间的热阻,可以降低热管焓升,后者还可以得到较好的慢化效果.通过热通道的传热恶化分析发现,超临界水冷堆的设计不能避免传热恶化,必须精确计算传热恶化条件下的包壳温度才能确定包壳能否保证其完整性.  相似文献   

13.
为了提升堆芯性能,本文对现有的双排棒组件设计及堆芯设计方案进行了优化,并利用超临界核热耦合计算平台评估了优化后的方案。在组件设计中,为了减少寿期末堆芯中可燃毒物残余,优化了组件中可燃毒物棒的位置及可燃毒物含量。在堆芯设计中,为了延长堆芯寿期、降低包壳温度,对堆芯给水分配方案、换料方案及控制棒方案进行了一系列的优化。耦合计算结果表明,改进后的堆芯设计方案满足设计准则,堆芯寿期、卸料燃耗和包壳温度等参数均优于原方案。  相似文献   

14.
针对超临界水堆的能谱特性及钍燃料的中子特性,提出了一种应用于超临界水堆的新型铀钍混合燃料组件设计方案,并利用组件计算程序Dragon"对该设计在不同工况下的中子学特性进行了分析,包括:无限增殖因数、反应性温度系数、易裂变材料存量比(FIR)等,以及它们随燃耗变化的规律。另外,通过改变混合燃料组件中燃料棒的慢化剂-燃料比,探究了其对燃料组件中子学特性的影响。结果表明:超临界水堆较硬的中子能谱有利于产生易裂变核素,同时该新型燃料组件在提高燃料利用率和减少次锕系元素存量方面具有一定的优势。  相似文献   

15.
简要介绍了中国超临界水冷堆(CSR1000)的总体设计,包括总体技术要求、总体技术路线、主要技术参数和几个关键技术问题的论证。  相似文献   

16.
针对超临界水堆(SCWR)控制棒落入堆芯事件特点,采用堆芯三维瞬态性能分析方法,利用开发的SCWR堆芯三维瞬态物理-热工水力耦合程序STTA,建立SCWR堆芯落棒瞬态三维计算模型和分析流程,研究分析超临界水堆CSR1000在控制棒落入堆芯瞬态过程中的堆芯性能,分析评价落棒瞬态下CSR1000堆芯的安全性能。堆芯三维落棒瞬态分析表明,当落入堆芯棒束价值较高时,落棒初期堆芯功率下降较快,之后由于水密度的反应性反馈,堆芯功率缓慢回升至新的平衡,堆芯功率下降速率超过了停堆信号整定值,将触发保护停堆;当落入堆芯棒束价值较低时,由于水密度的反应性反馈,堆芯功率下降缓慢,堆芯功率下降速率未能达到停堆信号整定值,不能触发保护停堆。控制棒落入堆芯对堆芯轴向功率分布影响很小,高价值落棒导致的落棒区域燃料组件功率坍塌相对低价值落棒更明显。无论是高价值落棒还是低价值落棒,瞬态过程中最大包壳壁面温度均低于瞬态安全限值850℃。水密度的显著反应性反馈及必要的保护停堆措施能保证CSR1000堆芯在控制棒落入堆芯过程中的安全性能。  相似文献   

17.
超临界水冷堆类四边形子通道亚临界水的传热试验研究   总被引:1,自引:0,他引:1  
在压力为11~19 MPa,质量流速为700~1300 kg/(m2·s),热流密度为200~600 k W/m2的工况范围内,对超临界水冷堆(SCWR)堆芯棒直径为8 mm,栅距比为1.2的类四边形子通道的传热特性进行试验研究。结果表明:热流密度对类四边形子通道管管内的传热特性的影响显著,热流密度越高,传热恶化越容易发生;在较低的质量流速下,传热恶化发生可能性较大,质量流速较高时,对传热特性影响较小;压力对类四边形管管内传热特性的影响明显,压力越高,传热恶化现象越易发生,且临界干度值越低,传热恶化所覆盖的焓值区域越大。  相似文献   

18.
超临界水冷堆CSR1000大破口失水事故分析   总被引:2,自引:0,他引:2  
为了验证中国超临界水冷堆CSR1000的安全特性,评估CSR1000安全系统的性能,采用APROS程序进行了该堆型的冷段大破口失水事故分析。冷段大破口情况下,喷放阶段的显著特征是堆芯冷却剂在冷段破口喷放作用下迅速发生反向流动,热段的高温、低密度流体进入堆芯导致堆芯传热恶化,包壳温度迅速上升。自动卸压系统(ADS)阀门的启动可恢复堆芯冷却剂正向流动,有效缓解堆芯过热。高压给水箱(HFT)可提供事故早期的堆芯冷却剂供给,并为低压安注的启动提供足够的响应时间。喷放结束后,堆芯逐渐被低压安注再淹没。冷段大破口的最高包壳温度为920℃,低于安全限值(1260℃)约340℃,出现在喷放阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号