首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
地铁列车在正线运行时会在车内产生噪声,而列车通过曲线段时车内噪声则更为显著。针对这一现象,首先对某地铁线路实际运营的B型地铁列车以不同速度通过曲线段时司机室和客室内的噪声进行了现场测试;然后进行了频域分析及A计权后的1/3倍频程频谱分析,得到了司机室和客室噪声频率特性分布;最后对通过曲线段时车内噪声A计权声压级进行了时变参量分析,得到了声压级随车速的分布特性。结果表明,车内的噪声主要由低频的车辆结构噪声和中频的轮轨噪声组成;低频结构噪声频率不随车速的增加而变化,而幅值有所增加;中频轮轨噪声的频率和幅值都随车速的提升有明显的提升;将车辆曲线通过速度降低到55km/h以下可以有效改善通过曲线段时噪声过大的问题。  相似文献   

2.
为研究高速列车车内气动噪声特性,利用统计能量分析方法构建包括422个车体结构子系统及170个车内声腔子系统的高速列车车内气动噪声计算模型。通过理论公式计算各个子系统的模态密度和内损耗因子,以及不同子系统之间的耦合损耗因子,通过大涡模拟方法计算各个车体结构子系统的湍流边界层输入激励,进而计算分析高速列车车内气动噪声。计算结果表明:各个车体结构子系统的脉动压力谱随着频率的增加呈现减小的趋势。随着车速的增加,各个频率下的高速列车车内气动噪声均增大。高速列车车内气动噪声的线性计权声压级具有明显的低频特性,而A计权声压级的显著频带范围较宽。司机室声腔A计权声压级的显著频带范围是100~2 000 Hz,乘客室声腔A计权声压级的显著频带范围是50~2 000 Hz。高速列车车内气动噪声的线性计权声压级和A计权声压级均与车速的对数近似呈线性关系。  相似文献   

3.
地铁司机室的声学环境对于司机的身心健康以及行车安全至关重要。司机室处于在转向架上方,其噪声主要来源于轮轨噪声,而钢轨波磨是地铁中常见的问题,严重的波磨会显著增大轮轨噪声,从而影响司机室的声学环境。众所周知波磨与车内噪声存在正相关的定性关系,但两者之间的定量关系尚不明确。因此深入地研究钢轨波磨与司机室车内噪声之间的关系,对司机室车内噪声控制至关重要。本文采取了现场试验与仿真计算相结合的研究方法,分析了有无波磨对司机室车内噪声的影响,以及司机室车内噪声与钢轨波磨之间的定量关系。  相似文献   

4.
随着运营时间的增加,轨道粗糙度增高,车内噪声随之增大,乘客舒适性降低。基于线路测试数据探寻轮轨粗糙度和车内噪声之间的关系,当列车以60km/h的速度运行于隧道内,波长为31.5-50mm的钢轨粗糙度超过C级钢轨粗糙度12dB时,车内噪声达到83dB;波长63-200mm的钢轨粗糙度对车内噪声影响较小。车轮整体粗糙度幅值超过A级幅值约11dB,车内噪声达到83.3dBA;列车以80km/h的速度运行,车轮整体粗糙度幅值超过A级幅值约6dB时,车内噪声达到83.1dBA,此时车内噪声总值超过相标准限值。制定合适周期的轮轨打磨策略,有利于降低噪声对乘客的影响。  相似文献   

5.
国内某地铁线路运营后曲线轨道出现了短波长钢轨波磨现象,通过力锤敲击法对不同扣件轨道动态特性进行了测试。利用ABAQUS建立了轮轨三维实体有限元模型,分析了轮轨耦合模态特性以及白噪声激励时轨道频响特性。结合试验和仿真结果,分析了轮轨结构动态特性与短波长钢轨波磨之间的相关性。研究结果表明:普通扣件和减振扣件轨道钢轨波磨主波长分别为30~63 mm和40~50 mm;白噪声激励下,两种轨道分别在450~920 Hz和570~720 Hz范围内的敏感共振频率与列车通过钢轨波磨频率(454~954 Hz和572~715 Hz)相吻合;线路轨道短波长波磨的产生主要与轨道结构高频固有特性相关,轨道短波长波磨通过频率与轮轨耦合模态频率相近,其模态振型表现为轮对弯曲扭转的同时,伴随钢轨相对轨道板的垂向弯曲振动,轮轨耦合高频模态特征加剧短波长波磨的发展。  相似文献   

6.
以某客车为研究对象,基于声振测试、频谱分析对怠速轰鸣现象进行研究,确定轰鸣噪声是由空调压缩机激励频率与车内声腔模态耦合引起。通过优化发动机悬置系统、加强空调压缩机支架刚度提升其固有频率避免70 Hz共振,由此削弱了车内声振耦合作用,改善了车内轰鸣噪声。实验结果表明:车内轰鸣噪声得到改善,A计权声压级降低了9.15 dB(A),由此为客车轰鸣噪声问题提供了可借鉴的解决方法。  相似文献   

7.
山地城市地铁平纵曲线交叠区段钢轨波磨频发,钢轨打磨是一种常用的抑制钢轨波磨发展的手段,而确定钢轨波磨的打磨限值是关键。根据现场调研构建山地城市地铁平纵曲线交叠区段的车辆-轨道系统动力学模型,采用动力学分析研究波磨特性对轮轨动态响应的影响规律,从车辆运行安全性的角度提出钢轨波磨的安全限值;构建波长为50 mm典型波磨区段的轮轨系统有限元模型,采用瞬时动态分析研究轮轨摩擦耦合振动特性,从钢轨波磨发展趋势的角度提出钢轨波磨的打磨限值。动力学分析结果表明,山地城市地铁平纵曲线交叠区段钢轨波磨波长为30、40、50、60、70 mm时的波深安全限值分别为0.03、0.04、0.05、0.08、0.15 mm。轮轨摩擦耦合振动分析结果表明,轮轨系统摩擦耦合振动随着波深的增大而增大,控制波深打磨限值在0.02 mm以下能有效抑制轮轨摩擦耦合振动并延缓波磨发展。  相似文献   

8.
地铁某线发生了大量的扣件T型螺栓异常断裂现象,极大地影响了运营安全,进而导致该区段限速40 km/h运行,降低了运输效率;为了恢复安全运营速度,提升该区段的运输效率,需要进行病害原因分析及治理.进行了地铁列车多级速度(40、60和75 km/h)运行试验,试验后钢轨及扣件T型螺栓振动加速度频谱分析表明,不同速度级下,轮轨共振频率、列车行车速度和波磨特征波长三者高度相关;因此认为,行车速度75 km/h下短波波磨引起的扣件系统的760 Hz处的共振现象是扣件T型螺栓异常断裂的主要原因.针对此问题对该区段施行了综合治理方案:1)更换反复断裂的扣件组;2)钢轨打磨;3)调节钢轨及T型螺栓的振动频率.治理措施完成后,对该区段进行为期1年的恢复速度工况下的跟踪监测,结果表明,该区段25 mm短波波磨未复发,钢轨及扣件T型螺栓振动能量显著降低,共振峰值消失,且扣件T型螺栓未再发生断裂.经过治理后,该区段运营速度恢复至75 km/h,综合治理方案达到提升区段运输安全及效率的目标.  相似文献   

9.
董勇  康彦兵  张华鹏  吴磊 《机械》2021,48(10):22-29
某地铁线路运营过程中,在通过波磨区段时车辆振动水平加剧,从而导致车辆的轴箱盖螺栓、一系悬挂弹簧等部件频繁发生疲劳断裂.为了研究钢轨波磨对车辆振动特性的影响,首先在车辆各主要部件上安装振动加速度传感器,然后在存在钢轨波磨的线路上开展车辆振动测试,根据获取的振动加速度数据来分析钢轨波磨、轨道结构及钢轨打磨前后条件下车辆轴箱、弹簧座、构架和车体地板的振动特性.结果表明:钢轨波磨对车辆轴箱、弹簧座和构架的振动影响较大,但对车体地板的振动影响不明显.轮轨系统振动在传递过程中,二系悬挂系统起到了较大的衰减振动能量的作用.当打磨后的钢轨波磨依然存在但波深显著降低的前提下,车辆轴箱和构架的振动水平显著降低,车体地板振动水平无明显变化.  相似文献   

10.
调查分析了广州某条地铁线路轨道短波长钢轨波磨现象形成原因。首先,现场测试了线路钢轨波磨状态,对比分析了采用相同车辆结构和运营条件的另一条地铁线路钢轨波磨特征的差异。然后,基于地铁轮对-轨道高频相互作用线性理论和钢轨磨损理论,建立了钢轨波磨频域分析模型。最后,基于力锤敲击测试方法获得了轨道结构动态特性,利用钢轨波磨频域模型计算分析了地铁车辆通过半径800 m曲线时的钢轨磨损率特征。结果表明:(1)地铁线路采用的GJ-III型减振扣件和DTVI型普通扣件长轨枕轨道在大半径(大于等于800 m)曲线均出现了30~40 mm波长钢轨波磨现象,其产生不是由轮对固有模态特性所致。(2)当车辆以90 km/h速度运行时,仿真获得的轨道钢轨磨损率在1030~1130 Hz和620~840 Hz范围表现最大,易萌生22~24 mm和28~40 mm波长波磨;仿真结果与现场测量的钢轨波磨特征吻合。(3)轨道垂向位移导纳值在620~840Hz高频段表现低是导致该地铁线路出现30~40 mm短波长波磨的主要原因。  相似文献   

11.
针对国内某地铁线路某些区段沿线的建筑物振动与二次辐射噪声严重现象,将轨道原来铺设的普通扣件改造为浮轨扣件,并在跨中钢轨轨腰位置加装阻尼器以降低振动噪声的影响。通过测量列车运营时间内的振动和噪声数据,分析列车通过改造前后线路时的轨道振动、车辆振动和噪声、建筑物振动与二次辐射噪声特性。结果表明:与改造前普通扣件轨道相比,改造后浮轨扣件轨道的钢轨、道床和隧道壁垂向振动加速度有效值分别降低8%,70.6%和71.4%,隧道壁振动降低最显著,由隧道壁垂向振动加速度评估的轨道减振效果为8.28 dB;转向架区域和车内最大声压级降低3.6%和3.4%;昼间建筑物振动和二次辐射噪声降低18.4%和22.0%。车辆、轨道、建筑物的振动与二次辐射噪声的主频均与轮轨系统P2共振频率接近,是引起车辆、轨道和建筑物振动的主要原因之一。  相似文献   

12.
为改善高速列车车内声场环境,优选出最佳的车体结构选材方案,以高速列车车顶结构为研究对象,将车顶隔声性能、客室内噪声以及心理声学三者联系起来,提出了基于心理声学的高速列车车内噪声预测及选材方法,并得出结论:基于心理声学客观参量的车内噪声评价方法相比于A声级能够更为合理地体现人耳的主观感受,并以此为基础确定出最佳的车顶结构选材方案;将车顶结构中的玻璃棉替换成岩棉后,结构计权隔声量提高1.3 d B,车内A计权声压级总值差异只有0.01 d BA,总响度和总噪度却发生恶化分别提高了1~1.5 sone和1~2 Noy;将5 mm隔音垫调至靠近车外一侧,结构计权隔声量提高1.4 d B,而车内A计权声压级总值车内A计权声压级总值差异0.1 d BA左右,而总响度、总噪度总值也发生恶化分别提高了3~5 sone和2~3 Noy。所提出的研究和评价方法对于高速列车车内噪声预测及车体结构的选材具有工程实用性和借鉴意义。  相似文献   

13.
本文以搭载2.0T汽油发动机和6AT变速箱的某国六样车为研究对象,针对怠速车内"哒哒声"问题,通过传递路径分析以及脱离脱附管验证,确定了碳罐电磁阀-脱附管-地板为主要传递路径,问题频段为450-600Hz。依据扩张消音器的工作原理,在脱附管上增加50mL的扩张腔体,最终怠速车内"哒哒声"消失,利用频谱分析法得到优化前后450-600Hz之间车内中排噪声降低了4.9dB(A),后排噪声降低了7.8dB(A),对应车内中排总声压级降低了1.3dB(A),后排总声压级降低了2.7dB(A),且主观评价完全可以接受。该优化方案简单有效,成本较低,具有一定的工程指导意义。  相似文献   

14.
基于CFD数值仿真优化设计方法,以某型高效离心通风机叶轮为研究对象,从气体流动机理出发,对前盘结构进行优化设计,旨在提高风机气动性能,降低风机气动噪声。结果表明,对该型离心通风机,通对对叶轮前盘优化,效率增加1.7%,全压增加2.1%,A计权声压级降低1.5dB(A)。通过样机制造及试验测试,优化后的机型全压效率为79.5%,A计权声压级为73.3dB(A),比A声级为7.6dB(A)。  相似文献   

15.
李新一  高阳  王奇  陈鹏  徐圣辉 《机械》2023,(8):32-38
为研究市域列车空调系统对车内噪声的影响,本文结合边界元法和声线跟踪法,建立了市域列车空调声源车内噪声仿真模型,模型在低频区(160Hz以下)使用边界元法,考虑了空调机组和风道气流等声源在空调风道以及客室车厢内传播的特性,在高频区(160Hz以上)使用声线跟踪法,最终得到整个频段的车内噪声。选取车内中心距离地板1.6 m高度处的声压级仿真与试验结果进行对比,结果显示试验与仿真曲线的变化趋势基本一致,声压级总值相差1 dB以内,各频段声压级差值在5 dB以内,验证了声学模型的准确性。最后应用该模型对空调降噪措施进行了仿真,当仅存在空调声源时,在管道底部铺设2 m的玻璃丝绵可降低车内噪声4.0 dB(A)。  相似文献   

16.
李俊  张合吉  陈帅  吴磊  王衡禹 《机械》2020,47(8):44-51
钢轨打磨小车是打磨列车进行打磨作业的主要执行机构,钢轨打磨小车工作时的振动状态会直接影响打磨质量。本文为探究钢轨打磨小车的振动特性及其对打磨质量的影响,分别在不同打磨速度和不同轨道波磨条件下进行了钢轨打磨小车的打磨实验,并对钢轨打磨小车在不同工况下的振动特性及打磨对钢轨不平顺质量的改善进行了现场测试。测试结果表明打磨小车在作业时的主要振动激励来源于砂轮与钢轨相互作用产生的振动,其频率与电机转子的旋转频率相同;随着打磨速度的增加,打磨小车各主要结构的振动幅值降低,且打磨后的钢轨不平顺质量有所提高;在具有波磨的轨道上进行打磨作业时,打磨小车各主要结构的振动幅值均高于在无波磨的轨道上打磨的幅值;当波磨的通过频率与打磨电机的激振频率吻合时,对钢轨打磨小车的振动和打磨后的钢轨不平顺质量均不利。  相似文献   

17.
DTVI_2扣件是目前北京地铁最常用的一种扣件型式,并在长期的使用中保持了良好的稳定性。然而,在新运营线路上采用DTVI_2扣件的区段却出现了钢轨波磨问题。针对该问题,提出在钢轨上安装调频式钢轨阻尼器(Tuned tail damper,TRD)的治理措施,并在北京地铁6号线某区段进行了现场试验研究。对DTVI_2扣件轨道安装TRD区段与未安装TRD区段进行对比试验,测试了钢轨的频响函数和振动衰减率,并对钢轨走形带粗糙度进行了为期456天的跟踪监测。试验结果表明:安装TRD可以改变钢轨频率响应动力特性,消除竖向209 Hz及横向845 Hz等多处共振峰,竖向与横向一阶pinned-pinned共振响应幅值分别下降23%与25%;安装TRD显著提高了轨道系统200~5 000 Hz频段阻尼,钢轨竖向振动衰减率最大提升约16倍(315 Hz),钢轨横向振动衰减率最大提升约8倍(160 Hz);DTVI_2扣件钢轨波磨典型波长为25~80 mm,跟踪监测结束时未安装TRD区段钢轨表面粗糙度级最大超出ISO3095限值达17 d B左右(50 mm),而安装TRD区段无显著钢轨波磨,安装TRD可以有效抑制DTVI_2扣件钢轨波磨的发展。  相似文献   

18.
轮轨噪声是关于车辆-轨道耦合作用以及轮轨关系的系统性问题,综合考虑对轮轨耦合匹配、车辆安全性、车辆平稳性、环境振动、车辆振动噪声等方面的影响,钢轨粗糙度和衰减率影响噪声的重要轨道参数,钢轨粗糙度影响400~800Hz的频段,制定合理的镟修周期,定期打磨车轮和轨道可以有效降低车内噪声,打磨后可降低车内噪声2dB以上。轨道衰减率普遍超过标准限值,增加安装振动吸能结构来实现可降低车内噪声,最大降低10dB以上。通过在车轮上安装阻尼结构提高车轮整体的阻尼,实现车轮辐射噪声的有效控制。以上措施可以有效降低车内噪声,提高乘坐舒适性。  相似文献   

19.
地铁车辆在正常运营过程中发生轴箱吊耳断裂问题,采用有限元分析方法和线路试验开展断裂机理研究,并对吊耳振动水平进行评估。通过分析振动激扰源和结构响应特性,确定断裂原因和提出解决方案并进行试验验证。仿真表明吊耳第一阶固有模态为横向弯曲,主频约260 Hz;吊耳根部内圆弧处为强度薄弱点,与现场裂纹位置吻合。试验表明轴箱体、吊耳振动水平与线路区间相关,钢轨波磨是导致车辆振动水平激增的主因,波长61.5 mm;钢轨波磨波长、车辆常用速度共同作用导致波磨频率在吊耳固有模态频带内,导致结构共振从而引发疲劳破坏,提出钢轨打磨、优化吊耳结构设计和使用管理条件等解决措施。开展钢轨打磨效果验证性试验,表明钢轨打磨可显著降低吊耳加速度水平,使结构应力降低50%以上,但部分线路仍存在轻微波磨,可根据车辆振动数据特征对波磨路段进行定位从而再次进行打磨。  相似文献   

20.
钢轨打磨列车作业装置是钢轨打磨列车打磨系统的核心部件,该装置通过液压系统、气动系统及电气系统,完成钢轨轨廓和波磨打磨工作,修整出满足列车运行的轨型,并延长钢轨使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号