首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
响应面法优化低温淀粉酶发酵条件研究   总被引:3,自引:0,他引:3  
目的:利用利用响应面法对低温淀粉酶发酵条件进行优化,确定最佳产酶条件。方法:使用DesignExpert软件的Plackett—Burman设计法对低温淀粉酶发酵条件进行了筛选,并利用响应面分析法进行了主要影响因素进行了回归分析。结果:筛出3个影响较大的因素,即蔗糖、蛋白胨、装添量;得到了各因素的最佳水平值,即蔗糖1.08%、蛋白胨2.02%、装添量87ml。结论:经3批发酵验证。其实验平均值38.1U/ml与预测值38.5U/ml非常接近,相关系数为98.8%。  相似文献   

2.
单因子-响应面法优化白地霉Y162产脂肪酶条件   总被引:1,自引:1,他引:1  
对白地霉Y162液体发酵产脂肪酶的条件进行了优化。首先采用单因子实验筛选出最适碳源为橄榄油,氮源为黄豆粉和NH4Cl,无机盐为BaCl2和MgCl2。在此基础上,利用Plackett-Burman设计对影响产酶因素的效应进行评价,筛选出具有显著效应的橄榄油、BaCl2和NH4Cl三个最显著的因素。用最陡爬坡路径逼近最大产酶区域后,利用响应面中心组合设计对显著因素进行优化,得出橄榄油、BaCl2和NH4Cl最佳浓度分别为2.35%,0.36%,1.35%。优化后液体发酵液中脂肪酶活力提高到31.85 U/mL,比初始酶活力14.16 U/mL提高了2.25倍,表明单因子-响应面结合法可显著优化白地霉Y162液体发酵产脂肪酶条件。  相似文献   

3.
Galactomyces geotrichum Y25产脂肪酶条件的优化   总被引:1,自引:0,他引:1  
应用响应面法对Galactomyces geotrichumY25液体发酵产脂肪酶的条件进行了优化。首先采用Plackett-Burman设计对影响产酶因素的效应进行评价,筛选出黄豆粉、玉米浆和发酵时间3个对产酶影响显著的因素。用最陡爬坡路径逼近最大产酶区域后,利用响应面设计对显著因素进行优化,得出黄豆粉、玉米浆最佳质量分数分别为2.51%、2.12%,最佳发酵时间101.95 h。优化后液体发酵液中脂肪酶活力提高到34.65 U/mL,比初始酶活力9.6 U/mL提高了3.61倍。表明响应面法可显著优化Galactomyces geotrichumY25液体发酵产脂肪酶条件。  相似文献   

4.
响应面法优化洋葱假单胞菌产脂肪酶液体发酵工艺   总被引:6,自引:0,他引:6  
用响应面法对洋葱假单胞菌G-63液体发酵产脂肪酶条件进行了优化。首先运用单因子试验筛选出麦芽糖和豆粉水解液为最适碳源和氮源。在此基础上,通过Plackett-Burman设计试验,对影响产酶条件的11个相关因子进行评估并筛选出具有显著效应的3个因子:橄榄油、豆饼粉水解液以及初始pH值。在用最陡爬坡实验逼近以上3个因子的最大响应区域后,采用响应面分析法,确定出橄榄油、豆粉水解液的最佳浓度和最佳初始pH值分别为4.337%,1.956%和8.38。优化后液体发酵培养基中脂肪酶活力提高到44.39 U/mL,比初始酶活13.45 U/mL提高了3.3倍。  相似文献   

5.
响应面法优化耐有机溶剂脂肪酶营养条件   总被引:2,自引:0,他引:2  
李俊  王刚  吕熹  王海娟  陈光 《生物技术》2010,20(4):66-69
目的:通过优化蜡状芽孢杆菌SWWL6产耐有机溶剂脂肪酶营养条件,产酶量有较大提高。方法与结果:通过单因素实验确定了产酶的最佳碳源、氮源及无机盐分别为可溶性淀粉、酵母膏、NH4NO3、MgSO4·7H2O和NaCl。部分因子实验结果表明初始培养基中酵母膏、NH4NO3的质量浓度对产酶的影响显著。通过最陡爬坡实验逼近最大响应区域。以中心组合设计和响应面分析法确定了最优培养基。结论:优化的培养基为酵母膏0.64%、NH4NO30.384%、可溶性淀粉1%、MgSO4·7H2O0.1%、NaCl0.25%、甲苯20%。优化后脂肪酶相对酶活为348.44%,比优化前提高了3.48倍。  相似文献   

6.
Burkholderia sp.脂肪酶具有较高的有机溶剂耐受性和转酯活性,广泛应用于手性化合物的拆分。本研究利用统计学方法对一株具有有机溶剂极端耐受性的脂肪酶高产茵株Burkholderia sp.ZYB002在摇瓶培养条件下产脂肪酶条件进行了优化。通过单因素实验,首先确定了最适碳源、氮源、诱导荆等。以Plackett—Burrman设计筛选影响Burkholderia sp.ZYB002产酶的主要因素,通过最陡爬坡实验和响应面分析法确定产酶最适条件。K2HP04、大豆油乳化液和起始RH确定为影响菌株产酶的3个主效因素。最佳产酶条件为:糊精0.3%(W/V),牛肉膏2.0%(W/V),MgSO4.7H2O.075%(W/V),K2HPO4 0.14%(W/V),大豆油乳化液4.89%(V/V),pH8.11,玻璃珠10颗/瓶,接种量2.0%(V/V),30℃,250r/min,发酵时间22h。在此条件下,发酵液脂肪酶酶活最高达45.6U/mL,较发酵基本培养基发酵液的脂肪酶酶活提高了3.44倍。  相似文献   

7.
响应面法优化酿酒酵母产油脂条件   总被引:8,自引:0,他引:8  
运用响应面法对酿酒酵母(Saccharomyces cerevisiae)产油脂以及发酵条件优化进行了研究。首先根据单因素实验结果,利用Plackett-Burman设计对影响其产油脂相关因素进行评估并筛选出具有显著效应的3个因素:柠檬酸,CaCl2和初始pH值。接着用最陡爬坡试验逼近以上3个因子的最大响应区域后,采用Box-Behnken设计以及响应面分析法,确定其优化后发酵条件为(w/v):葡萄糖15%,蛋白胨0.2%,酵母浸粉0.4%,柠檬酸0.471%,MgSO4·7H2O0.1%,ZnSO4·7H2O0.2%,CaCl20.025%,FeSO4·7H2O0.005%,初始pH值为6.74,180r/min,30°C培养96h。优化后的油脂产率(干重)达到14.55%,比在种子培养基中油脂产率4.76%提高了2倍左右。  相似文献   

8.
对一株产低温碱性脂肪酶细菌(Pseudoalteromonas sp.BJ17)的发酵条件进行了优化,研究各种碳源及氮源对产酶的影响,应用正交实验优化其发酵培养基组成。结果表明:最佳培养基组成为淀粉12g/L,蛋白胨12g/L,酵母膏3g/L,酪蛋白2g/L。最佳培养温度为25℃,发酵时间为16h。  相似文献   

9.
目的:通过对产脂肪酶粘质沙雷氏菌发酵条件的优化,使其酶活力得到大幅度提高。方法:用响应面法对产脂肪酶粘质沙雷氏菌的发酵产酶培养条件进行了优化。首先通过逐因子实验考察了该菌株产酶所需的最适碳源和氮源,在此基础上通过Plackett-burman法设计实验,考察了几种因素对产酶影响的大小,然后用最陡爬坡实验逼近以上几种因子的最大响应区域后,采用Box-Behnken设计25组实验,并利用Design-Expert对实验结果进行二次回归分析。结果:对产酶具有显著效应的4个因素为:蛋白胨、CaCl2、吐温、大豆油。实验优化到最佳的产酶条件为:糊精1%,蛋白胨0.7%、CaCl20.3%、吐温-80 1.68%、大豆油1.81%、K2HPO40.05%、MgSO40.05%、FeSO40.1%。结论:优化后发酵液上清的脂肪酶活力可达97.52U/ml,比优化前提高了10倍。  相似文献   

10.
【目的】研究产低温脂肪酶菌株CZW001发酵培养基。【方法】在单因素试验的基础上, 采用Plackett-Burman (P-B)设计, Box-Behnken (B-B)设计和响应面试验设计(RSM), 在20 °C、pH 8.0、160?r/min发酵2 d条件下, 对发酵培养基进行优化。【结果】该菌株最适产酶培养基为(g/L): 葡萄糖7.68, 橄榄油21.93, 硫酸铵2.0, 磷酸二氢钾1.0, 硫酸镁0.27, 氯化钙0.3, 氯化钠20.0, 吐温-80 1.0。其最高酶活为62.8 U/mL, 比优化前提高了3.14倍。【结论】通过对产低温脂肪酶菌株CZW001发酵培养基优化研究, 明显提高低温脂肪酶活力。  相似文献   

11.
为了对荷叶离褶伞产漆酶条件进行优化,在单因素实验基础上,通过最陡爬坡实验(PB)对培养基8因素进行筛选,获得影响产漆酶的3个显著性因素:葡萄糖,pH和KH2PO4;通过中心组合(CCD)设计及响应面分析确定了最优发酵条件:葡萄糖20.09g/L,酪蛋白1.5g/L,酵母提取物1.5g/L,MgSO4 3g/L,CuSO4 3.75mg/L,KH2PO4 3.97g/L,pH 4.98,VB1 0.1g/L,愈创木酚12mg/L,该条件下,漆酶酶活为829.83U/mL,较未优化对照提高46.6%.  相似文献   

12.
采用响应面分析方法,对阿萨希丝孢酵母(Trichosporon asahii)ZZB-1产酰胺酶的发酵培养基进行了优化。运用单N子试验筛选出麦芽糖和酵母浸膏为最适碳源、氮源,金属离子Ca^2+、Mn^2+可提高发酵酰胺酶产量;通过最陡爬坡实验逼近以上4个因子的最大响应区域后,采用Box—Behnken响应面分析法,确定产酰胺酶最佳发酵培养基为麦芽糖18.84g/L、酵母浸膏9.55g/L、NaC15g/L、KH2PO41g/L、MgSO4·7H2O0.2g/L、FeS040.001g/L、CaC0370.84μmol/L、MnS0465.39肚mo[/L(1%丙烯酸诱导),NH4·H2O调节pH至7.0。培养基优化后酰胺酶产量由初始2554U/L提高到4156U/L,为原始发酵培养基配方酶活产量的1.63倍。  相似文献   

13.
以稳定期微藻蛋白浓度为评价指标,利用响应面设计对微拟球藻(Nannochloropsis gaditana)的分批发酵条件进行优化。在单因素试验的基础上,选取温度、p H、搅拌速度及通气量为影响因子,采用四因素三水平的Box-Benhnken中心组合法设计试验。结果表明:微拟球藻的最佳发酵条件为温度30℃、p H 6.9、搅拌速度340 r/min以及通气量0.65 vvm,在此优化条件下得到微藻蛋白浓度为6.18 g/L,与模型预测值基本相符,较优化前提高了9.18%。  相似文献   

14.
对实验室保藏的一株维生素K2(MK-7)高产菌的摇瓶发酵条件进行优化,结果表明菌体在静置培养状态下比在摇瓶培养状态下能够合成更多的维生素K2;同时发现玉米粉经过高温淀粉酶液化之后非常适合作为合成维生素K2的碳源。最后利用响应面法对发酵培养基中主要因素的最适宜水平及其交互作用进行了研究与探讨,优化后维生素K2产量由7.09 mg·L-1提高到了67.22mg·L-1,高于文献报道值。  相似文献   

15.
采用响应面法对产生抑菌活性物质的波赛链霉菌(Streptomyces peucetius)菌株JMC 06001的发酵培养基进行优化。首先采用Minnimum Run Equireplicated Res IV设计对初始发酵培养基的8个营养因素进行筛选,获得影响产生抑菌活性物质的3个主要影响因素:葡萄糖、大豆粉和NaCI;然后用最陡爬坡实验快速逼近最大响应区域;最后,结合Box-Behnken设计及响应面分析,确定主要影响因素的最佳浓度,得出该菌株产抑菌活性物质的最优发酵培养基配方为:葡萄糖1.2%,麦芽糖0.7%,蛋白胨0.9%,大豆粉1.4%,NaCl3.7%,CaCO3 0.1%,复合盐A液2.0%,复合盐B液0.1%,起始pH值7.0。用优化后的培养基发酵所得发酵液对敏感指示菌藤黄八叠球菌的抑菌圈直径达31.5mm,与预测值的相对偏差仅为1.59%,与用初始发酵培养基发酵所得发酵液的抑菌效果(抑菌圈直径26.5mm)相比提高了18.9%。  相似文献   

16.
响应面法优化福鸽霉素发酵培养基   总被引:1,自引:0,他引:1  
采用Plackett-Burman设计法,对影响纤维堆囊菌So ceMWXAB-125产生福鸽霉素的9个因素进行了筛选。结果表明,影响该菌产生福鸽霉素的主要营养因素为马铃薯淀粉、CaCl2和脱脂奶粉。在此基础上,采用响应面法对其中3个显著因子的最佳水平范围进行研究,利用Design-Expert软件进行二次回归分析得知,马铃薯淀粉、CaCl2和脱脂奶粉的质量浓度分别为8.05、2.72和10.00 g/L时,福鸽霉素的产量从67 mg/L提高到119.98 mg/L。  相似文献   

17.
以吡咯伯克霍尔德氏菌Burkholderia pyrrocinia JK-SH007为出发菌株,对其发酵工艺进行优化,以期提高发酵效率.通过筛选试验、最陡爬坡试验和响应面分析确定影响JK-SH007菌株生长最重要两因素为玉米浆和葡萄糖,其最佳浓度分别为13.88 g/L和3.37 g/L.优化后的发酵工艺培养该菌浓度可达1.18×109 CFU/mL,比优化前提高1.35倍,抑菌活性提高28.84%.  相似文献   

18.
响应面法对红法夫酵母合成虾青素主要影响因素的优化   总被引:1,自引:0,他引:1  
在单因素试验确定了红法夫酵母生物合成虾青素培养基组份的基础上,用响应面法对其浓度进行优化。首先用分式析因设计评价了培养基的各组份对虾青素产量的影响,并找出主要影响因子为蔗糖和酵母粉,二者分别达到了极显著和显著水平。用最陡爬坡路径逼近最大响应区域后,运用旋转中心复合设计及响应面分析,确定了主要影响因子的最佳浓度。其中,蔗糖的最佳浓度为49.8g/L,酵母粉的浓度为9.6g/L。菌株在优化培养基中的虾青素产量为9861μg/L,比优化前增加了近1倍。  相似文献   

19.
采用单因素优化法对环糊精葡萄糖苷转移酶(CGTase)合成糖基抗坏血酸(AA-2G)条件进行优化,AA-2G的产量为2.76 g/L,比未优化前0.46g/L提高了500%。再采用响应面法对AA-2G合成条件进行优化。由Plackett-Burman法筛选出三个主要因素为:pH、V_C和麦芽糊精浓度;由最陡爬坡实验得出最佳响应面区域;最后由Box-Behnken实验,得到最优条件为:pH 5.51,V_C36.16g/L,麦芽糊精28.54 g/L,转化时间24 h,温度37℃。在此条件下,AA-2G的理论产量为3.15 g/L,通过验证实验,得出AA-2G的产量为3.13 g/L,与预测的理论值接近,比单因素优化的结果(2.76g/L)提高了14%。  相似文献   

20.
Aims: To evaluate the influence of environmental parameters on the production of antibiotics (xenocoumacins and nematophin) by Xenorhabdus nematophila and enhance the antibiotic activity. Methods and Results: Response surface methodology (RSM) was employed to study the effects of five parameters (the initial pH, medium volume in flask, rotary speed, temperature and inoculation volume) on the production of antibiotics in flask cultures by X. nematophila YL001. A 25?1‐factorial central composite design was chosen to explain the combined effects of the five parameters and to design a minimum number of experiments. The experimental results and software‐predicted values of production of antibiotics were comparable. The statistical analysis of the results showed that, in the range studied, medium volume in flask, rotary speed, temperature and inoculation volume had a significant effect (P < 0·05) on the production of antibiotics at their individual level, medium volume in flask and rotary speed showed a significant influence at interactive level and were most significant at individual level. The maximum antibiotic activity was achieved at the initial pH 7·64, medium volume in 250 ml flask 25 ml, rotary speed of 220 rev min?1, temperature 27·8°C and inoculation volume of 15·0%. Maximum antibiotic activity of 331·7 U ml?1 was achieved under the optimized condition. Conclusions: As far as known, there are no reports of production of antibiotic from X. nematophila by engineering the condition of fermentation using RSM. The results strongly support the use of RSM for fermentation condition optimization. The optimization of the environmental parameters resulted not only in a 43·4% higher antibiotic activity than unoptimized conditions but also in a reduced amount of the experiments. The chosen method of optimization of fermentation condition was efficient, relatively simple and time and material saving. Significance and Impact of the Study: This study should contribute towards improving the antibiotics activity of X. nematophila. Integrated into a broader study of the impact of environmental factors on the production of antibiotic, this work should help to build more rational control strategy, possibly involving scale‐up of production of antibiotics by X. nematophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号