首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, we present a fast global k-means clustering algorithm by making use of the cluster membership and geometrical information of a data point. This algorithm is referred to as MFGKM. The algorithm uses a set of inequalities developed in this paper to determine a starting point for the jth cluster center of global k-means clustering. Adopting multiple cluster center selection (MCS) for MFGKM, we also develop another clustering algorithm called MFGKM+MCS. MCS determines more than one starting point for each step of cluster split; while the available fast and modified global k-means clustering algorithms select one starting point for each cluster split. Our proposed method MFGKM can obtain the least distortion; while MFGKM+MCS may give the least computing time. Compared to the modified global k-means clustering algorithm, our method MFGKM can reduce the computing time and number of distance calculations by a factor of 3.78-5.55 and 21.13-31.41, respectively, with the average distortion reduction of 5,487 for the Statlog data set. Compared to the fast global k-means clustering algorithm, our method MFGKM+MCS can reduce the computing time by a factor of 5.78-8.70 with the average reduction of distortion of 30,564 using the same data set. The performances of our proposed methods are more remarkable when a data set with higher dimension is divided into more clusters.  相似文献   

2.
The k-means algorithm and its variations are known to be fast clustering algorithms. However, they are sensitive to the choice of starting points and are inefficient for solving clustering problems in large datasets. Recently, incremental approaches have been developed to resolve difficulties with the choice of starting points. The global k-means and the modified global k-means algorithms are based on such an approach. They iteratively add one cluster center at a time. Numerical experiments show that these algorithms considerably improve the k-means algorithm. However, they require storing the whole affinity matrix or computing this matrix at each iteration. This makes both algorithms time consuming and memory demanding for clustering even moderately large datasets. In this paper, a new version of the modified global k-means algorithm is proposed. We introduce an auxiliary cluster function to generate a set of starting points lying in different parts of the dataset. We exploit information gathered in previous iterations of the incremental algorithm to eliminate the need of computing or storing the whole affinity matrix and thereby to reduce computational effort and memory usage. Results of numerical experiments on six standard datasets demonstrate that the new algorithm is more efficient than the global and the modified global k-means algorithms.  相似文献   

3.
Clustering entities into dense parts is an important issue in social network analysis. Real social networks usually evolve over time and it remains a problem to efficiently cluster dynamic social networks. In this paper, a dynamic social network is modeled as an initial graph with an infinite change stream, called change stream model, which naturally eliminates the parameter setting problem of snapshot graph model. Based on the change stream model, the incremental version of a well known k-clique clustering problem is studied and incremental k-clique clustering algorithms are proposed based on local DFS (depth first search) forest updating technique. It is theoretically proved that the proposed algorithms outperform corresponding static ones and incremental spectral clustering algorithm in terms of time complexity. The practical performances of our algorithms are extensively evaluated and compared with the baseline algorithms on ENRON and DBLP datasets. Experimental results show that incremental k-clique clustering algorithms are much more efficient than corresponding static ones, and have no accumulating errors that incremental spectral clustering algorithm has and can capture the evolving details of the clusters that snapshot graph model based algorithms miss.  相似文献   

4.
Clustering is one of the important data mining tasks. Nested clusters or clusters of multi-density are very prevalent in data sets. In this paper, we develop a hierarchical clustering approach—a cluster tree to determine such cluster structure and understand hidden information present in data sets of nested clusters or clusters of multi-density. We embed the agglomerative k-means algorithm in the generation of cluster tree to detect such clusters. Experimental results on both synthetic data sets and real data sets are presented to illustrate the effectiveness of the proposed method. Compared with some existing clustering algorithms (DBSCAN, X-means, BIRCH, CURE, NBC, OPTICS, Neural Gas, Tree-SOM, EnDBSAN and LDBSCAN), our proposed cluster tree approach performs better than these methods.  相似文献   

5.
In recent years, there have been numerous attempts to extend the k-means clustering protocol for single database to a distributed multiple database setting and meanwhile keep privacy of each data site. Current solutions for (whether two or more) multiparty k-means clustering, built on one or more secure two-party computation algorithms, are not equally contributory, in other words, each party does not equally contribute to k-means clustering. This may lead a perfidious attack where a party who learns the outcome prior to other parties tells a lie of the outcome to other parties. In this paper, we present an equally contributory multiparty k-means clustering protocol for vertically partitioned data, in which each party equally contributes to k-means clustering. Our protocol is built on ElGamal's encryption scheme, Jakobsson and Juels's plaintext equivalence test protocol, and mix networks, and protects privacy in terms that each iteration of k-means clustering can be performed without revealing the intermediate values.  相似文献   

6.
By using a kernel function, data that are not easily separable in the original space can be clustered into homogeneous groups in the implicitly transformed high-dimensional feature space. Kernel k-means algorithms have recently been shown to perform better than conventional k-means algorithms in unsupervised classification. However, few reports have examined the benefits of using a kernel function and the relative merits of the various kernel clustering algorithms with regard to the data distribution. In this study, we reformulated four representative clustering algorithms based on a kernel function and evaluated their performances for various data sets. The results indicate that each kernel clustering algorithm gives markedly better performance than its conventional counterpart for almost all data sets. Of the kernel clustering algorithms studied in the present work, the kernel average linkage algorithm gives the most accurate clustering results.  相似文献   

7.
In this paper, the conventional k-modes-type algorithms for clustering categorical data are extended by representing the clusters of categorical data with k-populations instead of the hard-type centroids used in the conventional algorithms. Use of a population-based centroid representation makes it possible to preserve the uncertainty inherent in data sets as long as possible before actual decisions are made. The k-populations algorithm was found to give markedly better clustering results through various experiments.  相似文献   

8.
Clustering is one of the widely used knowledge discovery techniques to reveal structures in a dataset that can be extremely useful to the analyst. In iterative clustering algorithms the procedure adopted for choosing initial cluster centers is extremely important as it has a direct impact on the formation of final clusters. Since clusters are separated groups in a feature space, it is desirable to select initial centers which are well separated. In this paper, we have proposed an algorithm to compute initial cluster centers for k-means algorithm. The algorithm is applied to several different datasets in different dimension for illustrative purposes. It is observed that the newly proposed algorithm has good performance to obtain the initial cluster centers for the k-means algorithm.  相似文献   

9.
We present the global k-means algorithm which is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure consisting of N (with N being the size of the data set) executions of the k-means algorithm from suitable initial positions. We also propose modifications of the method to reduce the computational load without significantly affecting solution quality. The proposed clustering methods are tested on well-known data sets and they compare favorably to the k-means algorithm with random restarts.  相似文献   

10.
Recently, negative databases (NDBs) are proposed for privacy protection. Similar to the traditional databases, some basic operations could be conducted over the NDBs, such as select, intersection, update, delete and so on. However, both classifying and clustering in negative databases have not yet been studied. Therefore, two algorithms, i.e., a k nearest neighbor (kNN) classification algorithm and a k-means clustering algorithm in NDBs, are proposed in this paper, respectively. The core of these two algorithms is a novelmethod for estimating the Hamming distance between a binary string and an NDB. Experimental results demonstrate that classifying and clustering in NDBs are promising.  相似文献   

11.
Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. However, despite its popularity as a general purpose clustering algorithm, k-means has not received much respect in the color quantization literature because of its high computational requirements and sensitivity to initialization. In this paper, we investigate the performance of k-means as a color quantizer. We implement fast and exact variants of k-means with several initialization schemes and then compare the resulting quantizers to some of the most popular quantizers in the literature. Experiments on a diverse set of images demonstrate that an efficient implementation of k-means with an appropriate initialization strategy can in fact serve as a very effective color quantizer.  相似文献   

12.
The leading partitional clustering technique, k-modes, is one of the most computationally efficient clustering methods for categorical data. However, in the k-modes-type algorithms, the performance of their clustering depends on initial cluster centers and the number of clusters needs be known or given in advance. This paper proposes a novel initialization method for categorical data which is implemented to the k-modes-type algorithms. The proposed method can not only obtain the good initial cluster centers but also provide a criterion to find candidates for the number of clusters. The performance and scalability of the proposed method has been studied on real data sets. The experimental results illustrate that the proposed method is effective and can be applied to large data sets for its linear time complexity with respect to the number of data points.  相似文献   

13.
Evolving clusters in gene-expression data   总被引:1,自引:0,他引:1  
Clustering is a useful exploratory tool for gene-expression data. Although successful applications of clustering techniques have been reported in the literature, there is no method of choice in the gene-expression analysis community. Moreover, there are only a few works that deal with the problem of automatically estimating the number of clusters in bioinformatics datasets. Most clustering methods require the number k of clusters to be either specified in advance or selected a posteriori from a set of clustering solutions over a range of k. In both cases, the user has to select the number of clusters. This paper proposes improvements to a clustering genetic algorithm that is capable of automatically discovering an optimal number of clusters and its corresponding optimal partition based upon numeric criteria. The proposed improvements are mainly designed to enhance the efficiency of the original clustering genetic algorithm, resulting in two new clustering genetic algorithms and an evolutionary algorithm for clustering (EAC). The original clustering genetic algorithm and its modified versions are evaluated in several runs using six gene-expression datasets in which the right clusters are known a priori. The results illustrate that all the proposed algorithms perform well in gene-expression data, although statistical comparisons in terms of the computational efficiency of each algorithm point out that EAC outperforms the others. Statistical evidence also shows that EAC is able to outperform a traditional method based on multiple runs of k-means over a range of k.  相似文献   

14.
This paper proposes a novel intuitionistic fuzzy c-least squares support vector regression (IFC-LSSVR) with a Sammon mapping clustering algorithm. Sammon mapping effectively reduces the complexity of raw data, while intuitionistic fuzzy sets (IFSs) can effectively tune the membership of data points, and LSSVR improves the conventional fuzzy c-regression model. The proposed clustering algorithm combines the advantages of IFSs, LSSVR and Sammon mapping for solving actual clustering problems. Moreover, IFC-LSSVR with Sammon mapping adopts particle swarm optimization to obtain optimal parameters. Experiments conducted on a web-based adaptive learning environment and a dataset of wheat varieties demonstrate that the proposed algorithm is more efficient than conventional algorithms, such as the k-means (KM) and fuzzy c-means (FCM) clustering algorithms, in standard measurement indexes. This study thus demonstrates that the proposed model is a credible fuzzy clustering algorithm. The novel method contributes not only to the theoretical aspects of fuzzy clustering, but is also widely applicable in data mining, image systems, rule-based expert systems and prediction problems.  相似文献   

15.
Individual privacy may be compromised during the process of mining for valuable information, and the potential for data mining is hindered by the need to preserve privacy. It is well known that k-means clustering algorithms based on differential privacy require preserving privacy while maintaining the availability of clustering. However, it is difficult to balance both aspects in traditional algorithms. In this paper, an outlier-eliminated differential privacy (OEDP) k-means algorithm is proposed that both preserves privacy and improves clustering efficiency. The proposed approach selects the initial centre points in accordance with the distribution density of data points, and adds Laplacian noise to the original data for privacy preservation. Both a theoretical analysis and comparative experiments were conducted. The theoretical analysis shows that the proposed algorithm satisfies ε-differential privacy. Furthermore, the experimental results show that, compared to other methods, the proposed algorithm effectively preserves data privacy and improves the clustering results in terms of accuracy, stability, and availability.  相似文献   

16.
Manifold-ranking is a powerful method in semi-supervised learning, and its performance heavily depends on the quality of the constructed graph. In this paper, we propose a novel graph structure named k-regular nearest neighbor (k-RNN) graph as well as its constructing algorithm, and apply the new graph structure in the framework of manifold-ranking based retrieval. We show that the manifold-ranking algorithm based on our proposed graph structure performs better than that of the existing graph structures such as k-nearest neighbor (k-NN) graph and connected graph in image retrieval, 2D data clustering as well as 3D model retrieval. In addition, the automatic sample reweighting and graph updating algorithms are presented for the relevance feedback of our algorithm. Experiments demonstrate that the proposed algorithm outperforms the state-of-the-art algorithms.  相似文献   

17.
Functional verification has become the key bottleneck that delays time-to-market during the embedded system design process. And simulation-based verification is the mainstream practice in functional verification due to its flexibility and scalability. In practice, the success of the simulation-based verification highly depends on the quality of functional tests in use which is usually evaluated by coverage metrics. Since test prioritization can provide a way to simulate the more important tests which can improve the coverage metrics evidently earlier, we propose a test prioritization approach based on the clustering algorithm to obtain a high coverage level earlier in the simulation process. The k-means algorithm, which is one of the most popular clustering algorithms and usually used for the test prioritization, has some shortcomings which have an effect on the effectiveness of test prioritization. Thus we propose three enhanced k-means algorithms to overcome these shortcomings and improve the effectiveness of the test prioritization. Then the functional tests in the simulation environment can be ordered with the test prioritization based on the enhanced k-means algorithms. Finally, the more important tests, which can improve the coverage metrics evidently, can be selected and simulated early within the limited simulation time. Experimental results show that the enhanced k-means algorithms are more accurate and efficient than the standard k-means algorithm for the test prioritization, especially the third enhanced k-means algorithm. In comparison with simulating all the tests randomly, the more important tests, which are selected with the test prioritization based on the third enhanced k-means algorithm, achieve almost the same coverage metrics in a shorter time, which achieves a 90% simulation time saving.  相似文献   

18.
《Information Fusion》2008,9(2):223-233
Clustering categorical data is an integral part of data mining and has attracted much attention recently. In this paper, we present k-ANMI, a new efficient algorithm for clustering categorical data. The k-ANMI algorithm works in a way that is similar to the popular k-means algorithm, and the goodness of clustering in each step is evaluated using a mutual information based criterion (namely, average normalized mutual information – ANMI) borrowed from cluster ensemble. This algorithm is easy to implement, requiring multiple hash tables as the only major data structure. Experimental results on real datasets show that k-ANMI algorithm is competitive with those state-of-the-art categorical data clustering algorithms with respect to clustering accuracy.  相似文献   

19.
Almost all subspace clustering algorithms proposed so far are designed for numeric datasets. In this paper, we present a k-means type clustering algorithm that finds clusters in data subspaces in mixed numeric and categorical datasets. In this method, we compute attributes contribution to different clusters. We propose a new cost function for a k-means type algorithm. One of the advantages of this algorithm is its complexity which is linear with respect to the number of the data points. This algorithm is also useful in describing the cluster formation in terms of attributes contribution to different clusters. The algorithm is tested on various synthetic and real datasets to show its effectiveness. The clustering results are explained by using attributes weights in the clusters. The clustering results are also compared with published results.  相似文献   

20.
In clustering algorithms, choosing a subset of representative examples is very important in data set. Such “exemplars” can be found by randomly choosing an initial subset of data objects and then iteratively refining it, but this works well only if that initial choice is close to a good solution. In this paper, based on the frequency of attribute values, the average density of an object is defined. Furthermore, a novel initialization method for categorical data is proposed, in which the distance between objects and the density of the object is considered. We also apply the proposed initialization method to k-modes algorithm and fuzzy k-modes algorithm. Experimental results illustrate that the proposed initialization method is superior to random initialization method and can be applied to large data sets for its linear time complexity with respect to the number of data objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号