首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is an increasing concern about the fate of iodinated contrast media (ICM) in the environment. Limited removal efficiencies of currently applied techniques such as advanced oxidation processes require more performant strategies. The aim of this study was to establish an innovative degradation process for diatrizoate, a highly recalcitrant ICM, by using biogenic Pd nanoparticles as free suspension or immobilized in polyvinylidene fluoride (PVDF) and polysulfone (PSf) membranes. As measured by HPLC-UV, the removal of 20 mg L−1 diatrizoate by a 10 mg L−1 Pd suspension was completed after 4 h at a pH of 10. LC-MS analysis provided evidence for the sequential hydrodeiodination of diatrizoate. Pd did not lose its activity after incorporation in the PVDF and PSf matrix and the highest activity (kcat = 30.0 ± 0.4 h−1 L g−1 Pd) was obtained with a casting solution of 10% PSf and 500 mg L−1 Pd. Subsequently, water containing 20 mg L−1 diatrizoate was treated in a membrane contactor, in which the water was supplied at one side of the membrane while hydrogen was provided at the other side. In a fed batch configuration, a removal efficiency of 77% after a time period of 48 h was obtained. This work showed that membrane contactors with encapsulated biogenic nanoparticles can be instrumental for treatment of water contaminated with diatrizoate.  相似文献   

2.
Misiak K  Casey E  Murphy CD 《Water research》2011,45(11):3512-3520
Membrane aerated biofilm reactors (MABRs) have potential in wastewater treatment as they permit simultaneous COD minimisation, nitrification and denitrification. Here we report on the application of the MABR to the removal of fluorinated xenobiotics from wastewater, employing a Pseudomonas knackmussii monoculture to degrade the model compound 4-fluorobenzoate. Growth of biofilm in the MABR using the fluorinated compound as the sole carbon source occurred in two distinct phases, with early rapid growth (up to 0.007 h−1) followed by ten-fold slower growth after 200 h operation. Furthermore, the specific 4-fluorobenzoate degradation rate decreased from 1.2 g g−1 h−1 to 0.2 g g−1 h−1, indicating a diminishing effectiveness of the biofilm as thickness increased. In planktonic cultures stoichiometric conversion of substrate to the fluoride ion was observed, however in the MABR, approximately 85% of the fluorine added was recovered as fluoride, suggesting accumulation of ‘fluorine’ in the biofilm might account for the decreasing efficiency. This was investigated by culturing the bacterium in a tubular biofilm reactor (TBR), revealing that there was significant fluoride accumulation within the biofilm (0.25 M), which might be responsible for inhibition of 4-fluorobenzoate degradation. This contention was supported by the observation of the inhibition of biofilm accumulation on glass cover slips in the presence of 40 mM fluoride. These experiments highlight the importance of fluoride ion accumulation on biofilm performance when applied to organofluorine remediation.  相似文献   

3.
Pharmaceutical and personal care products, biocides and iodinated contrast media (ICM) are persistent compounds, which appear in ng to μg L−1 in secondary effluents of sewage treatment plants (STPs). In this work, biogenic metals manganese oxides (BioMnOx) and bio-palladium (Bio-Pd) were applied in lab-scale membrane bioreactors (MBR) as oxidative and reductive technologies, respectively, to remove micropollutants from STP-effluent. From the 29 substances detected in the STP-effluent, 14 were eliminated in the BioMnOx-MBR: ibuprofen (>95%), naproxen (>95%), diuron (>94%), codeine (>93%), N-acetyl-sulfamethoxazole (92%), chlorophene (>89%), diclofenac (86%), mecoprop (81%), triclosan (>78%), clarithromycin, (75%), iohexol (72%), iopromide (68%), iomeprol (63%) and sulfamethoxazole (52%). The putative removal mechanisms were the chemical oxidation by BioMnOx and/or the biological removal by Pseudomonas putida and associated bacteria in the enriched biofilm. Yet, the removal rates (highest value: 2.6 μg diclofenac L−1 d−1) need to improve by a factor 10 in order to be competitive with ozonation. ICM, persistent towards oxidative techniques, were successfully dehalogenated with a novel reductive technique using Bio-Pd as a nanosized catalyst in an MBR. Iomeprol, iopromide and iohexol were removed for >97% and the more recalcitrant diatrizoate for 90%. The conditions favorable for microbial H2-production enabling the charging of the Pd catalyst, were shown to be important for the removal of ICM. Overall, the results indicate that Mn oxide and Pd coupled to microbial catalysis offer novel potential for advanced water treatment.  相似文献   

4.
Long-term exposure to low concentrations of disinfection byproducts (DBPs) in drinking water has been associated with increased human-health risks of bladder cancer and adverse reproductive outcomes. In this study, we investigated electrochemical reduction utilizing a resin-impregnated graphite cathode for the degradation of 17 DBPs (i.e. halomethanes, haloacetonitriles, halopropanones, chloral hydrate and trichloronitromethane) at low μg L−1 concentration levels. The reduction experiments were potentiostatically controlled at cathode potentials −700, −800 and −900 mV vs Standard Hydrogen Electrode (SHE) during 24 h. At the lowest potential applied (i.e. −900 mV vs SHE), the disappearance of DBPs from the solution after 24 h of reduction was >70%, except for chloroform (32%), 1,1-dichloropropanone (48%), and chloral hydrate (31%). Due to the participation of several removal mechanisms (e.g. electrochemical reduction, adsorption, volatilization and/or hydrolysis) it was not possible to distinguish the removal efficiencies of electrochemical reduction of individual compounds. Adsorption of the more hydrophilic DBPs (i.e. haloacetonitriles, chloral hydrate, and 1,1-dichloropropanone) onto the electrode seems to be affected by the cathode polarization, as the removals observed in the open circuit experiments were significantly higher than the ones obtained in electrochemical reduction under the same conditions. The overall efficiency of reduction was estimated based on the analyses of the released Cl, Br and I ions. Nearly complete C-I bond cleavage was achieved at all three potentials applied, and from the theoretically predicted release of I ions, calculated based on the removed DBPs, 86 ± 9 to 92 ± 1% was measured in the catholyte solution at −700 to −900 mV vs SHE. Debromination efficiencies obtained were 74 ± 3, 79 ± 6 and 68 ± 4% at −700, −800 and −900 mV vs SHE, while for C-Cl bond cleavage the obtained values were 69 ± 1, 72 ± 1 and 76 ± 4%, respectively. Nevertheless, dechlorination efficiencies are to be considered as approximate, since an increase in Cl concentration was observed in the open circuit experiments due to the hydrolysis of some of the chlorine-containing DBPs. Although the Coulombic efficiencies for DPBs dehalogenation were only 1.9 ± 0.3 (−900 mV vs SHE) -4.1 ± 0.2% (−700 mV vs SHE), relatively low energy consumption of the process was observed, estimated at 72 ± 2 Wh m−3 at −900 mV vs SHE for the concentration range of DBPs in this study (i.e. 65.3-129.7 μg L−1). The study demonstrated that reductive electrochemical treatment has the potential to be a modern remediation technology for the removal of low concentrations of halogenated DBPs in water.  相似文献   

5.
Development of granular sludge for textile wastewater treatment   总被引:2,自引:0,他引:2  
Microbial granular sludge that is capable to treat textile wastewater in a single reactor under intermittent anaerobic and aerobic conditions was developed in this study. The granules were cultivated using mixed sewage and textile mill sludge in combination with anaerobic granules collected from an anaerobic sludge blanket reactor as seed. The granules were developed in a single sequential batch reactor (SBR) system under alternating anaerobic and aerobic condition fed with synthetic textile wastewater. The characteristics of the microbial granular sludge were monitored throughout the study period. During this period, the average size of the granules increased from 0.02 ± 0.01 mm to 2.3 ± 1.0 mm and the average settling velocity increased from 9.9 ± 0.7 m h−1 to 80 ± 8 m h−1. This resulted in an increased biomass concentration (from 2.9 ± 0.8 g L−1 to 7.3 ± 0.9 g L−1) and mean cell residence time (from 1.4 days to 8.3 days). The strength of the granules, expressed as the integrity coefficient also improved. The sequential batch reactor system demonstrated good removal of COD and ammonia of 94% and 95%, respectively, at the end of the study. However, only 62% of color removal was observed. The findings of this study show that granular sludge could be developed in a single reactor with an intermittent anaerobic-aerobic reaction phase and is capable in treating the textile wastewater.  相似文献   

6.
Peter C. Pollard 《Water research》2010,44(20):5939-5948
Biofilm-bacterial communities have been exploited in the treatment of wastewater in ‘fixed-film’ processes. Our understanding of biofilm dynamics requires a quantitative knowledge of bacterial growth-kinetics in these microenvironments. The aim of this paper was to apply the thymidine assay to quantify bacterial growth without disturbing the biofilm on the surfaces of emergent macrophytes (Schoenoplectus validus) of a constructed wetland. The isotope was rapidly and efficiently taken-up and incorporated into dividing biofilm-bacteria. Isotope diffusion into the biofilm did not limit the growth rate measurement. Isotope dilution was inhibited at >12 μM thymidine. Biofilm-bacterial biomass and growth rates were not correlated to the plant surface area (r2 < 0.02). The measurements of in situ biofilm-bacterial growth rates both displayed, and accommodated, the inherent heterogeneity of the complex wetland ecosystem. Biofilm-bacterial respiratory activities, measured using the redox dye CTC, and growth rates were measured simultaneously. The dye did not interfere with bacterial growth. Biofilm-bacterial specific growth rates ranged from 1.4 ± 0.6 d−1 to 3.3 ± 1.3 d−1. In the constructed wetlands of this study biofilm-bacterial specific growth rates, compared to those of natural ecosystems, could be markedly improved through changes in wetland design that increased bacterial respiration while minimising biofilm growth.  相似文献   

7.
This research demonstrates the feasibility and advantages of a 2-step process for the biological treatment of sulfidic spent caustics under halo-alkaline conditions (i.e. pH 9.5; Na+ = 0.8 M). Experiments with synthetically prepared solutions were performed in a continuously fed system consisting of two gas-lift reactors in series operated at aerobic conditions at 35 °C. The detoxification of sulfide to thiosulfate in the first step allowed the successful biological treatment of total-S loading rates up to 33 mmol L−1 day−1. In the second, biological step, the remaining sulfide and thiosulfate was completely converted to sulfate by haloalkaliphilic sulfide oxidizing bacteria. Mathematical modeling of the 2-step process shows that under the prevailing conditions an optimal reactor configuration consists of 40% ‘abiotic’ and 60% ‘biological’ volume, whilst the total reactor volume is 22% smaller than for the 1-step process.  相似文献   

8.
Soufan M  Deborde M  Legube B 《Water research》2012,46(10):3377-3386
Diclofenac reactivity and fate during water chlorination was investigated in this work. In the first step, chlorination kinetic of diclofenac (DCF) was studied in the pH range of 4-10 at 20 ± 2 °C and in the presence of an excess of total chlorine. A second-order reaction (first-order relative to DCF concentration and first-order relative to free chlorine concentration) was shown with rate constant about 3.89 ± 1.17 M−1 s−1 at pH 7. The elementary reactions (i.e. reactions of hypochlorous acid (HOCl) with neutral and ionized forms of DCF, and acid-catalysed reaction of HOCl with neutral and ionized forms of DCF) were proposed to explain the pH-dependence of the rate constants and intrinsic constant of each of them were calculated. In the second step, several degradation products formed during chlorination of DCF were identified. These compounds could come from an initial chlorine electrophilic attack on aromatic ring or amine function of DCF. Some of these chlorinated derivatives seem to accumulate in solution in the presence of an excess of chlorine.  相似文献   

9.
The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag0) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag0 particles, preventing aggregation during encapsulation. In this study, bio-Ag0 was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag0 and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranes was successfully demonstrated and was most probably related to the slow release of Ag+ from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag0powder m−2 in a submerged plate membrane reactor operated at a flux of 3.1 L m−2 h−1. Upon startup, the silver concentration in the effluent initially increased to 271 μg L−1 but after filtration of 31 L m−2, the concentration approached the drinking water limit ( = 100 μg L−1). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m−2 h−1, showing the potential of this membrane technology for water disinfection on small scale.  相似文献   

10.
The presence of iodinated X-ray contrast media compounds (ICM) in surface and ground waters has been reported. This is likely due to their biological inertness and incomplete removal in wastewater treatment processes. The present study reports partial degradation mechanisms based on elucidating the structures of major reaction by-products using γ-irradiation and LC-MS. Studies conducted at concentrations higher than observed in natural waters is necessary to elucidate the reaction by-product structures and to develop destruction mechanisms. To support these mechanistic studies, the bimolecular rate constants for the reaction of OH and eaq with one ionic ICM (diatrizoate), four non-ionic ICM (iohexol, iopromide, iopamidol, and iomeprol), and the several analogues of diatrizoate were determined. The absolute bimolecular reaction rate constants for diatrizoate, iohexol, iopromide, iopamidol, and iomeprol with OH were (9.58 ± 0.23)×108, (3.20 ± 0.13)×109, (3.34 ± 0.14)×109, (3.42 ± 0.28)×109, and (2.03 ± 0.13) × 109 M−1 s−1, and with eaq were (2.13 ± 0.03)×1010, (3.35 ± 0.03)×1010, (3.25 ± 0.05)×1010, (3.37 ± 0.05)×1010, and (3.47 ± 0.02) × 1010 M−1 s−1, respectively. Transient spectra for the intermediates formed by the reaction of OH were also measured over the time period of 1-100 μs to better understand the stability of the radicals and for evaluation of reaction rate constants. Degradation efficiencies for the OH and eaq reactions with the five ICM were determined using steady-state γ-radiolysis. Collectively, these data will form the basis of kinetic models for application of advanced oxidation/reduction processes for treating water containing these compounds.  相似文献   

11.
H Dong  H Yu  X Wang  Q Zhou  J Feng 《Water research》2012,46(17):5777-5787
Single chambered air-cathode microbial fuel cells (MFCs) are promising to be scaled up as sustainable wastewater treatment systems. However, the current air-cathode made by brushing noble metal catalyst and Nafion binder onto carbon matrix becomes one of the biggest bottlenecks for the further development of MFCs due to its high cost, huge labor-consuming and less accuracy. A novel structure of air-cathode was constructed here by rolling activated carbon (AC) and polytetrafluoroethylene (PTFE) as catalyst layer to enhance the reproducibility and improve the performance by an optimized three-phase interface (TPI). Air-cathodes with AC/PTFE ratios of 3, 5, 6, 8 and 11 in the catalyst layer were prepared, and the physical and electrochemical techniques were employed to investigate their surface microstructure and electrochemical characteristics. Uniform cross-linked ropiness networks were observed from the catalyst layer of all the cathodes and increased as the AC/PTFE ratio decreased, while the exchange currents were positively related to this ratio. Maximum power densities (MPDs) decreased as follows: AC/PTFE = 6 (802 mW m−2 at 3.4 A m−2), 5 (704 mW m−2 at 2.2 mA m−2), 8 (647 mW m−2 at 2.2 A m−2), 3 (597 mW m−2 at 2.1 A m−2) and 11 (584 mW m−2 at 2.0 mA m−2), which was due to the changes of both the capacitance characteristics and conductivities according to the electrochemical impedance spectrum (EIS) analysis. This study demonstrated that inexpensive, highly reproducible, high performance and scalable air-cathode can be produced by rolling method without using noble metal and expensive binder.  相似文献   

12.
The water quality of 13 rivers in the lowland, agricultural county of Suffolk is investigated using routine monitoring data for the period 1981 to 2006 collected by the Environment Agency of England and Wales (EA), and its predecessors, with particular emphasis on phosphorus (as total reactive phosphorus, TRP) and total (dissolved and particulate) oxidised nitrogen (TOxN — predominantly nitrate NO3). Major ion and flow data are used to outline fundamental hydrochemical characteristics related to the groundwater provenance of base-flow waters. Relative load contributions from point and diffuse sources are approximated using Load Apportionment Modelling for both TRP and TOxN where concurrent flow and concentration data are available. Analyses indicate a mixture of point and diffuse sources of TRP, with the former being dominant during low flow periods, while for TOxN diffuse sources dominate.Out of 59 sites considered, 53 (90%) were found to have annual average TRP concentrations greater than 0.05 mg P l− 1, and 36 (61%) had average concentrations over 0.120 mg P l− 1, the upper thresholds for ‘High’ and ‘Good’ ecological status, respectively. Correspondingly, for TOxN, most of the rivers are already within 70% of the 11.3 mg N l− 1 threshold, with two rivers (Wang and Ore) being consistently greater than this.It is suggested that the major challenge is to characterise and control point-source TRP inputs which, being predominant during the late spring and summer low-flow period, coincide with the peak of primary biological production, thus presenting the major challenge to achieving ‘good’ ecological status under the Water Framework Directive. Results show that considerable effort is still required to ensure appropriate management and develop tools for decision-support.  相似文献   

13.
Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long period of time. Two pilot-scale vertical-flow soil filter eco-technologies, a roughing filter (RF) and a polishing filter (PF) with plants (willows), were operated independently in a single-stage configuration and coupled together in a multi-stage (RF + PF) configuration to investigate the MTBE and benzene removal performances. Both filters were loaded with groundwater from a refinery site contaminated with MTBE and benzene as the main contaminants, with a mean concentration of 2970 ± 816 and 13,966 ± 1998 μg L−1, respectively. Four different hydraulic loading rates (HLRs) with a stepwise increment of 60, 120, 240 and 480 L m−2 d−1 were applied over a period of 388 days in the single-stage operation. At the highest HLR of 480 L m−2 d−1, the mean concentrations of MTBE and benzene were found to be 550 ± 133 and 65 ± 123 μg L−1 in the effluent of the RF. In the effluent of the PF system, respective mean MTBE and benzene concentrations of 49 ± 77 and 0.5 ± 0.2 μg L−1 were obtained, which were well below the relevant MTBE and benzene limit values of 200 and 1 μg L−1 for drinking water quality. But a dynamic fluctuation in the effluent MTBE concentration showed a lack of stability in regards to the increase in the measured values by nearly 10%, which were higher than the limit value. Therefore, both (RF + PF) filters were combined in a multi-stage configuration and the combined system proved to be more stable and effective with a highly efficient reduction of the MTBE and benzene concentrations in the effluent. Nearly 70% of MTBE and 98% of benzene were eliminated from the influent groundwater by the first vertical filter (RF) and the remaining amount was almost completely diminished (∼100% reduction) after passing through the second filter (PF), with a mean MTBE and benzene concentration of 5 ± 10 and 0.6 ± 0.2 μg L−1 in the final effluent. The emission rate of volatile organic compounds mass into the air from the systems was less than 1% of the inflow mass loading rate. The results obtained in this study not only demonstrate the feasibility of vertical-flow soil filter systems for treating groundwater contaminated with MTBE and benzene, but can also be considered a major step forward towards their application under full-scale conditions for commercial purposes in the oil and gas industries.  相似文献   

14.
Changlong Wu 《Water research》2010,44(12):3585-12365
The phototransformation of two organophosphorus pesticides, parathion and chlorpyrifos, by hydroxyl radicals and carbonate radicals in aqueous solution were studied. Addition of hydrogen peroxide increased the UV degradation rates of both pesticides and data were simulated through kinetic modeling. The second-order rate constants of parathion and chlorpyrifos with hydroxyl radical were determined to be 9.7 ± 0.5 × 109 and 4.9 ± 0.1 × 109 M−1 s−1, respectively. The presence of bi/carbonate ions reduced the pesticide degradation rates via scavenging of hydroxyl radical but the formation of carbonate radical also contributed to the degradation of the pesticides with second-order reaction rate constants of 2.8 ± 0.2 × 106 and 8.8 ± 0.4 × 106 M−1 s−1 for parathion and chlorpyrifos, respectively. The dual roles of bicarbonate ion in UV/H2O2 treatment systems, i.e., scavenging of hydroxyl radicals and formation of carbonate radicals, were examined and discussed using a simulative kinetic model. The transformation of pesticides by carbonate radicals at environmentally relevant bi/carbonate concentrations was shown to be a significant contributor to the environmental fate of the pesticides and it reshaped the general phototransformation kinetics of both pesticides in UV/H2O2 systems.  相似文献   

15.
The highly reactive bimetallic Fe/Ni nanoparticles immobilized in nylon 66 and PVDF membranes were synthesized and characterized for dechlorination of trichloroethylene (TCE) under anoxic conditions. Scanning electron microscopy (SEM) images and electron probe microanalysis (EPMA) elemental maps showed that the distribution of Fe in nylon 66 membrane was uniform and the intensity of Ni layer was higher than that in PVDF membrane. The particle sizes of bimetallic Fe/Ni in PVDF and nylon 66 membranes were 81 ± 12 and 55 ± 14 nm with the Ni layers of 12 ± 3 and 15 ± 2 nm, respectively. Low agglomeration of immobilized Fe/Ni nanoparticles in nylon 66 membrane was observed, presumably attributed to the more multifunctional chelating groups in membrane. A rapid hydrodechlorination of TCE with ethane as the main end product was observed by the immobilized Fe/Ni nanoparticles. The pseudo-first-order rate constants for TCE dechlorination were 6.44 ± 0.32 and 1.66 ± 0.08 h−1 for nylon 66 and PVDF membranes, respectively. In addition, the efficiency and rate of TCE dechlorination increased upon increasing the mass loading of Ni, ranging between 2.5 and 20 wt%, and then decreased when further increased the Ni loading to 25 wt%. In addition, the stability and longevity of the immobilized Fe/Ni nanoparticles was evaluated by repeatedly injecting TCE into the solutions. A rapid and complete dechlorination of TCE by trace amounts of Fe/Ni nanoparticles was observed after 16 cycles of injection within 10 days, indicating that the immobilization of Fe/Ni nanoparticles in the hydrophilic nylon 66 membrane can retain the longevity and high reactivity of nanoparticles towards TCE dechlorination.  相似文献   

16.
17.
Sulfide can be removed from wastewater and recovered as elemental sulfur using an electrochemical process. Recently, we demonstrated this principle of product recovery on synthetic feeds. Here, we present a lab scale electrochemical reactor continuously removing sulfide from the effluent of an anaerobic treatment process operated on paper mill wastewater. The effluent contained 44 ± 7 mg of sulfide-S L−1. Sulfide was reduced to 8 ± 2 mg-S L−1, at a removal rate of 0.845 ± 0.133 kg-S m−3 of total anodic compartment (TAC) d−1. The removed sulfide was recovered (75 ± 4% recovery) as pure concentrated alkaline sulfide/polysulfide solution, from which solid elemental sulfur was obtained. The electrochemical sulfide removal was not affected by different soluble constituents or particulate materials present in the wastewater. However, over time sulfide removal decreased due to biological sulfur reduction using the organics present in the wastewater. Therefore, a periodic switching strategy between anode and cathode was developed. Biofilm formation was avoided as the pH of the cathode solution increased to inhibitory levels during cathodic operation, while still allowing full recovery of the sulfur as end product.  相似文献   

18.
Hydrogen sulfide generation is the key cause of sewer pipe corrosion, one of the major issues in water infrastructure. Current abatement strategies typically involve addition of various types of chemicals to the wastewater, which incurs large operational costs. The transport, storage and application of these chemicals also constitute occupational and safety hazards. In this study, we investigated high rate electrochemical oxidation of sulfide at Ir/Ta mixed metal oxide (MMO) coated titanium electrodes as a means to remove sulfide from wastewater. Both synthetic and real wastewaters were used in the experiments. Electrochemical sulfide oxidation by means of indirect oxidation with in-situ produced oxygen appeared to be the main reaction mechanism at Ir/Ta MMO coated titanium electrodes. The maximum obtained sulfide removal rate was 11.8 ± 1.7 g S m−2 projected anode surface h−1 using domestic wastewater at sulfide concentrations of ≥30 mg L−1 or higher. The final products of the oxidation were sulfate, thiosulfate and elemental sulfur. Chloride and acetate concentrations did not entail differences in sulfide removal, nor were the latter two components affected by the electrochemical oxidation. Hence, the use of electrodes to generate oxygen in sewer systems may constitute a promising method for reagent-free removal of sulfide from wastewater.  相似文献   

19.
A laboratory-scale, four-stage continuous flow reactor system was constructed to test the viability of high-strength acid mine drainage (AMD) and municipal wastewater (MWW) passive co-treatment. The synthetic AMD had pH 2.60 and 1860 mg/L acidity as CaCO3 equivalent with 46, 0.25, 2, 290, 55, 1.2 and 390 mg/L of Al, As, Cd, Fe, Mn, Pb and Zn, respectively. The AMD was introduced to the system at a 1:2 ratio with raw MWW from the City of Norman, Oklahoma USA containing 265 ± 94 mg/L BOD5, 11.5 ± 5.3 mg/L PO4−3, and 20.8 ± 1.8 mg/L NH4+-N. During the 135 d experiment, PO4−3 and NH4+-N were decreased to <0.75 and 7.4 ± 1.8 mg/L, respectively. BOD5 was generally decreased to below detection limits. Nitrification increased NO3 to 4.9 ± 3.5 mg/L NO3-N, however relatively little denitrification occurred. Results suggest that the nitrogen processing community may require an extended period to mature and reach full efficiency. Overall, results indicate that passive AMD and MWW co-treatment is a viable ecological engineering approach for the developed and developing world that can be optimized and applied to improve water quality with minimal use of fossil fuels and refined materials.  相似文献   

20.
The hypothesis that the combination of the flocculent polyaluminium chloride (PAC) with the lanthanum-modified bentonite Phoslock® (Flock & Lock) could sink effectively a water bloom of cyanobacteria and could shift a turbid, cyanobacteria infested lake to a clear water lake was tested in a controlled laboratory experiment and a whole lake experiment. In the laboratory, a relatively low dose of the flocculent PAC (2.2 and 4.4 mg Al l−1) was insufficient to sediment positively buoyant cyanobacteria (Microcystis aeruginosa). Similarly, the lanthanum modified clay (dosed at 390 mg l−1) was insufficient to sediment the positively buoyant cyanobacteria. However, the combination of PAC and Phoslock® effectively sedimented cyanobacteria flocks. Likewise, a combined treatment of 2 tons PAC and 18 tons Phoslock® in Lake Rauwbraken in April 2008 effectively sedimented a developing cyanobacteria bloom of Aphanizomenon flos-aquae. The average chlorophyll-a concentration in the two years prior to this Flock & Lock treatment was 19.5 (±36.5) μg l−1, while it was as low as 3.7 (±4.5) μg l−1 in the years following the treatment. The combined treatment effectively reduced the amount of total phosphorus (TP) in the water column from on average 169 (±126) μg P l−1 before the application to 14 (±15) μg P l−1 after the treatment. Based on mean summer chlorophyll-a and TP concentrations, the lake was shifted from a eutrophic/hypertrophic state to an oligo/mesotrophic state. From directly after treatment in April 2008 until and including 2013, Lake Rauwbraken remained in an oligo-mesotrophic clear water state with TP reduced to less than 10% of the pre-treatment. This result shows that eutrophication in relatively small, isolated, stratifying lakes can be restored by targeting both water column and sediment P using a combination of flocculent and solid phase P-sorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号