首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
C. Schuster  H. Mohr 《Planta》1990,181(3):327-334
Nitrate reductase (NR, EC 1.6.6.1) and nitrite reductase (NIR, EC 1.7.7.1) are the key enzymes of nitrate reduction. It is well established that the appearance of these enzymes is “induced” by nitrate, and it is generally believed that NR is cytosolic while NIR is plastidic. In mustard (Sinapis alba L.) cotyledons we observed two isoforms of NIR (NIR1 and NIR2) using a chromato-focusing technique. Only one of them (NIR2) disappeared when the plastids were damaged by photooxidation in the presence of Norflurazon. It is concluded that NIR2 is plastidic while NIR1 is extraplastidic and not affected by photooxidation of the plastids. Both isoforms appear to have the same molecular weight (60 kilodaltons, kDa). Two distinct translation products which could be immunoprecipitated with NIR antiserum produced against total NIR from mustard were observed which differed slightly in molecular weight (60 versus 63 kDa). The 63-kDa polypeptide was considered to be the precursor of NIR2. While synthesis of NIR protein depended largely on nitrate, the levels of in-vitro-translatable NIR mRNAs were found to be either independent of nitrate and light (NIR1) or controlled by phytochrome only (NIR2). It appears that phytochrome strongly stimulates the level of mRNA while significant enzyme synthesis (NIR2) takes place only in the presence of relatively large amounts of nitrate. Since an increased enzyme level was strictly correlated with an increase of immunoresponsive NIR protein it is improbable that activation of a precursor plays a role. Rather, it is concluded that, in situ, nitrate controls translation.  相似文献   

3.
U. Hecht  R. Oelmüller  S. Schmidt  H. Mohr 《Planta》1988,175(1):130-138
In mustard (Sinapis alba L.) cotyledons, NADH-dependent glutamate synthase (NADH-GOGAT, EC 1.4.1.14) is only detectable during early seedling development with a peak of enzyme activity occurring between 2 and 2.5 d after sowing. With the beginning of plastidogenesis at approximately 2 d after sowing, ferredoxindependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) appears while NADH-GOGAT drops to a very low level. The enzymes were separated by anion exchange chromatography. Both enzymes are stimulated by light operating through phytochrome. However, the extent of induction is much higher in the case of Fd-GOGAT than in the case of NADH-GOGAT. Moreover, NADH-GOGAT is inducible predominantly by red light pulses, while the light induction of Fd-GOGAT operates predominantly via the high irradiance response of phytochrome. The NADH-GOGAT level is strongly increased if mustard seedlings are grown in the presence of nitrate (15 mM KNO3,15 mM NH4NO3) while the Fd-GOGAT level is only slightly affected by these treatments. No effect on NADH-GOGAT level was observed by growing the seedlings in the presence of ammonium (15 mM NH4Cl) instead of water, whereas the level of Fd-GOGAT was considerably reduced when seedlings were grown in the presence of NH4Cl. Inducibility of NADH-GOGAT by treatment with red light pulses or by transferring water-grown seedlings to NO 3 - -containing medium follows a temporal pattern of competence. The very low Fd-GOGAT level in mustard seedlings grown under red light in the presence of the herbicide Norflurazon, which leads to photooxidative destruction of the plastids, indicates that the enzyme is located in the plastids. The NADH-GOGAT level is, in contrast, completely independent of plastid integrity which indicates that its location is cytosolic. It is concluded that NADH-GOGAT in the early seedling development is mainly concerned with metabolizing stored glutamine whereas Fd-GOGAT is involved in ammonium assimilation.Abbreviations and symbols c continuous - D darkness - Fd-GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - FR far-red light (3.5 W·m-2) - NADH-GOGAT NADH-dependent glutamate synthase (EC 1.4.1.14) - Pfr far-red absorbing form of phytochrome - Ptot total phytochrome - R red light (6.8 W· m-2) - RG9-light long wavelength FR (10 W·m-2, RG9<0.01) - () Pfr/Ptot=wavelength-dependent photoequilibrium of the phytochrome system  相似文献   

4.
Phytochrome-induced increases in enzyme activities for phenylalanine ammonia-lyase (EC 4.3.1.5) and chalcone isomerase (EC 5.5.1.6), and in amounts of the related end products, anthocyanin and the flavonol, quercetin, were measured in cotyledons of mustard (Sinapis alba L.). There was no correlation between the activities of these enzymes and the rate of anthocyanin accumulation; however, some correlation was found with the quercetin accumulation rate. Since anthocyanin and flavonol accumulation is spatially separated in mustard (flavonols in the upper epidermis, anthocyanin in the lower epidermis), it was possible to measure anthocyanin-associated phenylalanine ammonia-lyase independently. This activity correlated well with the accumulation rate for anthocyanin during the first few hours after induction. The phytochrome effect on anthocyanin formation differed from that on quercetin formation: anthocyanin was strongly induced by continuous far-red light and by both continuous red light and red light pulses, whereas quercetin was only effectively induced by continuous far-red light.Abbreviations CHI chalcone isomerase - PAL phenylalanine ammonia-lyase  相似文献   

5.
R. Oelmüller  G. Dietrich  G. Link  H. Mohr 《Planta》1986,169(2):260-266
Phytochrome-controlled appearance of ribulose-1,5-bisphosphate carboxylase (RuBP-Case) and its subunits (large subunit LSU, small subunit SSU) was studied in the cotyledons of the mustard (Sinapis alba L.) seedling. The main results were as follows: (i) Control of RuBPCase appearance by phytochrome is a modulation of a process which is turned on by an endogenous factor between 30 and 33 h after sowing (25° C). Only 12 h later the process begins to respond to phytochrome. (ii) The rise in the level of RuBP-Case is the consequence of a strictly coordinated synthesis de novo of the subunits. (iii) While the levels of translatable mRNA for SSU are compatible with the rate of SSU synthesis the relatively high LSU mRNA levels are not reflected in the rates of in-vivo LSU or RuBPCase syntheses. (iv) Gene expression is also abolished in the case of nuclear-encoded SSU if intraplastidic translation and concomitant plastidogenesis is inhibited by chloramphenicol, pointing to a plastidic factor as an indispensable prerequisite for expression of the SSU gene(s). (v) Regarding the control mechanism for SSU gene expression, three factors seem to be involved: an endogenous factor which turns on gene expression, phytochrome which modulates gene expression, and the plastidic factor which is an indispensable prerequisite for the appearance of translatable SSU mRNA.Abbreviations CAP chloramphenicol - cFR continuous farred light - LSU large subunit of RuBPCase - NADP-GPD NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) - Pfr far-red-absorbing form of phytochrome - pSSU precursor of SSU - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - SSU small subunit of RuBPCase  相似文献   

6.
C. Schuster  R. Oelmüller  H. Mohr 《Planta》1987,171(1):136-143
Application of nitrate leads to an induction of nitrate reductase (NR; EC 1.6.6.1) and nitrite reductase (NIR; EC 1.7.7.1) in the cotyledons of dark-grown mustard (Sinapis alba L.) seedlings, and this induction can strongly be promoted by a far-red-light pretreatment — operating through phytochrome — prior to nitrate application. This light treatment is almost ineffective — as far as enzyme appearance is concerned — if no nitrate is given. When nitrate is applied, the stored light signal potentiates the appearance of NR and NIR in darkness, even in the absence of active phytochrome, to the same extent as continuous far-red light. This action of previously stored light signal lasts for approx. 12 h.Storage of the light signal was measured for NR and NIR. The process shows enzyme-specific differences. Storage occurs in the absence as well as in the presence of nitrate, i.e. irrespective of whether or not enzyme synthesis takes place. The kinetics of signal transduction and signal storage indicate that the formation and action of the stored signal are a bypass to the process of direct signal transduction. Signal storage is possibly a means of enabling the plant to maintain the appropriate levels of NR and NIR during the dark period of the natural light/dark cycle.Abbreviations cD continuous darkness - cFR continuous far-red light - D darkness - FR far-red light - NIR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.6.6.1) - Pfr phytochrome (far-red absorbing) - Pr phytochrome (red absorbing) - R red light - RG9-light long wavelength far-red light obtained with RG9 glass filter - - Ptot total phytochrome (Pr+Pfr) Professor Wilhelm Nultsch mit guten Wünschen zum 60. Geburtstag  相似文献   

7.
D. Bajracharya  P. Schopfer 《Planta》1979,145(2):181-186
The degradation of storage fat in the cotyledons of mustard seedlings is unaffected by phytochrome and photosynthesis (irradiation with continuous red or far-red light from sowing of the seeds) although light imposes a strong constraint on the translocation of organic matter from the cotyledons into the seedling axis. Likewise, the development and disappearance of glyoxysomal enzyme activities (isocitrate lyase, malate synthase, citrate synthase) takes place independently of light. It is concluded that the mobilization of storage fat (fatcarbohydrate transformation) is independent of photomorphogenesis. The surplus of carbohydrate produced from fat in the light seems to be converted to starch grains in the plastids, which function as a secondary storage pool in the cotyledons.Abbreviations CS citrate synthase - ICL isocitrate lyase - MS malate synthase  相似文献   

8.
Two cell lines of carrot (Daucus carota L. spp. sativus), grown as cell-suspension cultures in the dark, were irradiated with ultraviolet light (315–420 nm) 10 d after the onset of cultivation. Chalcone synthase (CHS) enzyme activity was induced in both cell lines. Anthocyanin synthesis was only stimulated in the anthocyanin-containing cell line DCb. Parallel to the increase in CHS activity there was an increase with time in the amount of one CHS form with an isoelectric point of 6.5 and a molecular weight of 40 kilodaltons (kDa) per subunit. Whereas the anthocyanin-free cell line DCs failed to accumulate anthocyanin, it did stimulate another CHS form with an isoelectric point at pH 5.5 and a molecular weight of 43 kDa per subunit. Both enzyme activities could be separated by isoelectric focusing and stabilized using sodium hydrosulfite as an oxidation protectant. In carrot plants, CHS was restricted to the dark purple petals of the inflorescence (40 kDa) and to the leaves (43 kDa).Abbreviations BSA bovine serum albumin - CHS chalcone synthase - IEF isoelectric focusing - kDa kilodaltons - KPi potassium phosphate buffer - PAL phenylalanine ammonialyase - pI isoelectric point - UV ultraviolet  相似文献   

9.
R. Oelmüller  H. Mohr 《Planta》1986,167(1):106-113
Expression of nuclear genes involved in plastidogenesis is known to be controlled by light via phytochrome. Examples are the small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase and the light harvesting chlorophyll a/b binding protein of photosystem II (LHCP). In the present study we show that, beside phytochrome, the integrity of the plastid is essential for the expression of the pertinent nuclear genes as measured at the level of translatable mRNA. When the plastids are severely damaged by photooxidation in virtually carotenoid-free mustard (Sinapis alba L.) seedling cotyledons (made carotenoid-free by the application of Norflurazon, NF), almost no SSU, no SSU precursor, LHCP and LHCP precursor can be detected by immunological assays, and almost no translatable mRNA of SSU and LHCP can be found, although the levels and rates of phytochrome-mediated syntheses of representative cytoplasmic, mitochondrial and glyoxisomal enzymes are not adversely affected and morphogenesis of the mustard seedling proceeds normally (Reiß et al. 1983; Planta 159, 518–528). Norflurazon per se has no effect on the amount of translatable mRNA of SSU and LHCP as shown by irradiation of NF-treated seedlings with far-red light (FR) which strongly activates phytochrome but does not cause photooxidation in the plastids. It is concluded that a signal from the plastid is required to allow the phytochrome-mediated appearance of translatable mRNA for SSU and LHCP. Seedlings not treated with NF show a higher level of translatable mRNALHCP in red light (RL) compared to FR, whereas the mRNASSU levels are the same in RL and FR. These facts indicate that the level of translatable mRNALHCP is adversely affected if the apoprotein is not incorporated into the thylakoid membrane.Abbreviations FR far-red light (3.5 W m-2) - LHCP light harvesting chlorophyll a/b binding protein of photosystem II - LSU large subunit of RuBPCase - NF Norflurazon - RL red light (6.8 W m-2) - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - SSU small subunit of RuBPCase - WL white light (28 W m-2)  相似文献   

10.
An increase of glutathione reductase (GR; EC 1.6.4.2) activity during the transformation of mustard (Sinapis alba L.) cotyledons from storage organs to photosynthetically competent leaves was previously found to be controlled by light acting via phytochrome (Drumm, H., Mohr, H., Z. Naturforsch. 28c 559–563, 1973). Two isoforms of GR could be separated by disc electrophoresis. In the present study we have applied ionexchange chromatography to separate isoforms of GR during the development of the cotyledons. Furthermore, the technique of in situ photooxidation of plastids was used to distinguish between plastidic and cytoplasmatic isoforms. The isoform GR2 is the plastidic enzyme, as shown by its sensitivity to photooxidative treatment, while GR1 is a cytoplasmatic protein not affected by photooxidative treatment of plastids. Both isoforms are promoted by phytochrome but with different time courses. The appearance of GR1 is independent of the integrity of the plastids, as one might expect. However, unexpectedly, the phytochrome-mediated re-appearance of GR2 after a photooxidative treatment is much less affected by photooxidative destruction of the plastids, i.e. by the lack of a particular plastidic factor, than was to be expected from previous experience with typical plastidic proteins. An interpretation of this finding must await measurements at the level of GR2 mRNA.Abbreviations c continuous - D darkness - FR far-red light (3.5 W·m-2) - FPLC fast protein liquid chromatography - GR glutathione reductase (EC 1.6.4.2) - NF Norflurazon - R fed light (6.8 W·m-2) - = Pfr/Ptot wavelength-dependent photoequilibrium of the phytochrome system  相似文献   

11.
Han YY  Ming F  Wang W  Wang JW  Ye MM  Shen DL 《Genetica》2006,128(1-3):429-438
Plant genomes appear to exploit the process of gene duplication as a primary means of acquiring biochemical and developmental flexibility. The best example is the gene encoding chalcone synthase (CHS, EC2.3.1.74), the first committed step in flavonoid biosynthesis. In this study, we examined the molecular evolution of three CHS family members of Phalaenopsis including a novel chs gene (phchs5), which is slowly evolved. The inferred phylogeny of the chs genes of Phalaenopsis with other two orchid plants, Bromoheadia finlaysoniana and Dendrobium hybrid, suggested that gene duplication and divergence have occurred before divergence of these three genera. Relatively quantitative RT-PCR analysis identified expression patterns of these three chs genes in different floral tissues at different developmental stages. Phchs5 was the most abundantly expressed chs gene in floral organs and it was specifically transcribed in petal and lip at the stages when anthocyanin accumulated (stage1–4). Phchs3 and phchs4 were expressed at much lower levels than phchs5. Phchs3 was expressed in pigmented tissue (including lip, petal and sepal) at middle stages (stages 2–4) and in colorless reproductive tissue at late stage (stage 5). Phchs4 was only expressed in petal at earlier stages (stage 1–3) and in lip at middle stage (stage 4). These results present new data on differentiation of gene expression among duplicate copies of chs genes in Phalaenopsis.  相似文献   

12.
13.
The etioplast»chloroplast transition in the cotyledons of mustard seedlings (Sinapis alba L.) has been studied by electron microscopy. It was found that the active form of phytochrome, established by a red light pulse pretreatment, increases the initial rate and eliminates the lag of grana and stroma thylakoid formation after the onset of white light 60 h after sowing. The effect of a pretreatment with 15 s red light pulses is fully reversible by 756 nm light pulses. This reversibility is lost within 5 min. Evidence is presented which suggests that the time course of grana and stroma thylakoid formation is not correlated with the time course of the dispersal of the prolamellar body. The different functions of phytochrome and chlorophyll in controlling thylakoid formation are discussed.  相似文献   

14.
15.
B. Thomsen  H. Drumm-Herrel  H. Mohr 《Planta》1992,186(4):600-608
In photosynthetic cells the plastidic ascorbate-glutathione pathway is considered the major sequence involved in the elimination of active oxygen species. Ascorbate peroxidase (APO; EC 1.11.1.11) is an essential constituent of this pathway. In the present paper control of the appearance of APO was studied in the cotyledons of mustard (Sinapis alba L.) seedlings with the following results: (i) Two isoforms of APO (APO I, APO II) could be separated by anion-exchange chromatography; APO I is a plastidic protein, while APO II is extraplastidic, very probably cytosolic. (ii) The appearance of APO is regulated by light via phytochrome. This control is observed with both isoforms. Moreover, a strong positive control over APO II appearance (very probably over APO II synthesis) is exerted by photooxidative treatment of the plastids. (iii) Additional synthesis of extraplastidic APO II is induced by a signal created by intraplastidic pigment-photosensitized oxidative stress. The response is obligatorily oxygen-dependent and abolished by quenchers of singlet oxygen such as -tocopherol and p-benzoquinone. (iv) A short-term (4 h) photooxidative treatment suffices to saturate the signal. Signal transduction cannot be abolished or diminished by replacing the plants in non-photooxidizing conditions. Several observations indicate that control of APO synthesis by active oxygen is not an experimental artifact but a natural phenomenon.Abbreviations APO ascorbate-specific peroxidase (EC 1.11.1.11) - D darkness - FPLC fast protein liquid chromatography - FR far-red light (3.5 W · m–2) - NF Norflurazon - R red light (6.8 W · m–2) This research was supported by a grant from the Deutsche For-schungsgemeinschaft. B. Th. was the recipient of a stipend from the Studienstiftung des Deutschen Volkes.  相似文献   

16.
The incorporation of deuterium from deuterium oxide into the free amino acids of the cotyledons of Sinapis alba L. was studied by gas chromatography-mass spectrometry and was similar, both qualitatively and quantitatively, after incubation of the seedlings in darkness or far-red light. The results support studies which show that phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is synthesised de novo, rather than activated, in response to far-red light.Abbreviations GC-MS Gas chromatography-mass spectrometry - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - HFB n-propyl heptafluorobutyryl n-propyl  相似文献   

17.
18.
An oat (Avena sativa L.) plant contains at least three phytochromes, which have monomeric masses of 125, 124, and 123 kilodaltons (kDa) (Wang et al., 1991, Planta 184, 96–104). The 124-kDa phytochrome is most abundant in dark-grown seedlings, while the other two phytochromes predominate in light-grown seedlings. Using three monoclonal antibodies, each specific to one of the three phytochromes, we have monitored by immunoblot assay the expression of these three phytochromes in the 5 d following onset of imbibition of seeds. On a per-organism basis, each of these three phytochromes increased in abundance for the first 3 d in the light, or for the first 4 d in darkness, after which they each began to decrease in quantity. When 3-d-old dark-grown seedlings were transferred to the light, the abundance of each of these three phytochromes decreased both in absolute amount and relative to the phytochrome levels in control seedlings kept in darkness. In contrast, when 3-d-old light-grown seedlings were transferred to darkness, the abundance of the 124-kDa and 125-kDa phytochromes increased while that of 123-kDa phytochrome remained unchanged. In each case, the level of phytochrome was greater than that of control seedlings maintained in the light. Thus, in addition to temporal regulation, all three phytochromes exhibit photoregulated expression at the protein level, although the magnitude of this photoregulation varies substantially. We thank Drs. Elizabeth Williams and Tammy Sage (Botany Department, University of Georgia, USA) for generously permitting us to use their image-analysis system. This research was supported by USDA NRICGP grant 91-37100-6490.  相似文献   

19.
B. Bruns  K. Hahlbrock  E. Schäfer 《Planta》1986,169(3):393-398
The fluence dependence of the time course of accumulation of chalcone synthase mRNA in ultraviolet (UV)-light-irradiated cell suspension cultures of parsley (Petroselinum crispum) and the additional effects of blue and far-red light have been investigated. Variations of the UV fluence had no detectable influence on the initial rate of increase in mRNA amount or translational activity, nor on the preceding lag period of approximately 3 h, but strongly influenced the duration of the transient increase. The effects were the same whether the fluence rate or the time of irradiation was varied to obtain a given fluence. Blue-light pretreatment of the cells resulted in increased amounts of mRNA and abolished the apparent lag period. This effect remained cryptic without the subsequent UV-light treatment. Irradiation with long-wavelength far-red light following UV-light pulses shortened the duration of the mRNA accumulation period. This effect was not altered by a preceding blue-light treatment. Thus, three photoreceptors, a UV-B receptor, a blue-light receptor and phytochrome, participate in the regulation of chalcone synthase mRNA accumulation in this system.Abbreviations cDNA complementary DNA - UV ultraviolet - Pfr fai-red-absorbing form of phytochrome  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号