首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The hydrogen generation from photoelectrochemical (PEC) water splitting under visible light was investigated using large area tungsten oxide (WO3) photoanodes. The photoanodes for PEC hydrogen generation were prepared by screen printing WO3 films having typical active areas of 0.36, 4.8 and 130 cm2 onto the conducting fluorine-doped tin oxide (FTO) substrates with and without embedded inter-connected Ag grid lines. TiO2 based dye-sensitized solar cell was also fabricated to provide the required external bias to the photoanodes for water splitting. The structural and morphological properties of the WO3 films were studied before scaling up the area of photoanodes. The screen printed WO3 film sintered at 500 °C for 30 min crystallized in a monoclinic crystal structure, which is the most useful phase for water splitting. Such WO3 film revealed nanocrystalline and porous morphology with grain size of ∼70-90 nm. WO3 photoanode coated on Ag grid embedded FTO substrate exhibited almost two-fold degree of photocurrent density enhancement than that on bare FTO substrate under 1 SUN illumination in 0.5 M H2SO4 electrolyte. With such enhancement, the calculated solar-to-hydrogen conversion efficiencies under 1 SUN were 3.24% and ∼2% at 1.23 V for small (0.36 cm2) and large (4.8 cm2) area WO3 photoanodes, respectively. The rate of hydrogen generation for large area photoanode (130.56 cm2) was 3 mL/min.  相似文献   

2.
The design of photoanode with highly efficient light harvesting and charge collection properties is important in photoelectrochemical (PEC) cell performance for hydrogen production. Here, we report the hierarchical In2O3:Sn/TiO2/CdS heterojunction nanowire array photoanode (ITO/TiO2/CdS-nanowire array photoanode) as it provides a short travel distance for charge carrier and long light absorption pathway by scattering effect. In addition, optical properties and device performance of the ITO/TiO2/CdS-nanowire array photoanode were compared with the TiO2 nanoparticle/CdS photoanode. The photocatalytic properties for water splitting were measured in the presence of sacrificial agent such as SO32− and S2− ions. Under illumination (AM 1.5G, 100 mW/cm2), ITO/TiO2/CdS-nanowire array photoanode exhibits a photocurrent density of 8.36 mA/cm2 at 0 V versus Ag/AgCl, which is four times higher than the TiO2 nanoparticle/CdS photoanode. The maximum applied bias photon-to-current efficiency for the ITO/TiO2/CdS-nanowire array and the TiO2 nanoparticle/CdS photoanode were 3.33% and 2.09%, respectively. The improved light harvesting and the charge collection properties due to the increased light absorption pathway and reduced electron travel distance by ITO nanowire lead to enhancement of PEC performance.  相似文献   

3.
The fabrication and characterization of CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure that has potential applications in photocatalytic water splitting and toxic pollutants degradation are investigated. CdSe(top)/CdS(under) double-layer is conformally deposited onto TiO2 nanotubes by successive ionic layer adsorption and reaction (SILAR) and electrochemical atomic layer deposition (ECALD), respectively, for the CdS under layer and the CdSe top layer. Such double sensitized TiO2 nanotubular photoelectrode exhibits significant enhancements in photoconversion efficiency, visible light response, and efficient hydrogen generation. The detailed synthesis process and the surface morphology, phase structure, elemental analysis, and photoelectrochemical properties of the resulting films with the CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure are discussed. The photoconversion efficiency of 9.47% and hydrogen generation rate of 10.24 ml h−1 cm−2 were observed. Both values are a 7-fold enhancement compared with that of the pure TiO2 nanotube. The as-prepared photoelectrode presents potential application for industrialized photocatalytic hydrogen generation in the future.  相似文献   

4.
An integrated solar water splitting tandem cell without external bias was designed using a FeOOH modified TiO2/BiVO4 photoanode as a photoanode and p-Cu2O as a photocathode in this study. An apparent photocurrent (0.37 mA/cm2 at operating voltage of +0.36 VRHE) for the tandem cell without applied bias was measured, which is corresponding to a photoconversion efficiency of 0.46%. Besides, the photocurrent of FeOOH modified TiO2/BiVO4–Cu2O is much higher than the operating point given by pure BiVO4 and Cu2O photocathode (∼0.07 mA/cm2 at +0.42 VRHE). Then we established a FeOOH modified TiO2/BiVO4–Cu2O two-electrode system and measured the current density-voltage curves under AM 1.5G illumination. The unassisted photocurrent density is 0.12 mA/cm−2 and the corresponding amounts of hydrogen and oxygen evolved by the tandem PEC cell without bias are 2.36 μmol/cm2 and 1.09 μmol/cm2 after testing for 2.5 h. The photoelectrochemical (PEC) properties of the FeOOH modified TiO2/BiVO4 photoanode were further studied to demonstrate the electrons transport process of solar water splitting. This aspect provides a fundamental challenge to establish an unbiased and stabilized photoelectrochemical (PEC) solar water splitting tandem cell with higher solar-to-hydrogen efficiency.  相似文献   

5.
Photoelectrochemical (PEC) hydrogen generation gives an opportunity to acquire energy by means of clean and renewable resources such as water and solar light. A major problem in the PEC system is the stability of the photoanode material for long-term applications. Recently, self-assembled titanium dioxide (TiO2) semiconductors (and their hybrids) have shown potential to generate hydrogen in the PEC system. In the present investigation, stability of the nanotubular TiO2 in 1 M KOH solution under illumination conditions is investigated. The photoanode is found to be stable (in terms of activity and morphologically) for one month (8 h/day) without much change in the hydrogen generation rate. Possible photoelectrochemical reactions that can be responsible for degradation of performance of nanotubular TiO2 material are identified. Various spectroscopic and electrochemical measurements, viz., SEM, XRD, DRUV-Vis and Mott–Schottky are employed to confirm that the nanotubular TiO2 photoanode can be used for long-term applications.  相似文献   

6.
Highly ordered TiO2 nanotube arrays for hydrogen production have been synthesized by electrochemical anodization of titanium sheets. Under solar light irradiation, hydrogen generation by photocatalytic water splitting was carried out in the two-compartment photoelectrochemical cell without any external applied voltage. The hydrogen gas and oxygen generated on Pt side and on TiO2 nanotubes side respectively were efficiently separated. The effect of anodization time on the morphology structures, photoelectrochemical properties and hydrogen production was systematically investigated. Due to more charge carrier generation and faster charge transfer, a maximum photoconversion efficiency of 4.13% and highest hydrogen production rate of 97 μmol h−1cm−2 (2.32 mL h−1cm−2) were obtained from TiO2 nanotubes anodized for 60 min.  相似文献   

7.
To improve the photoelectrochemical (PEC) water splitting efficiency for hydrogen production, we reported the fabrication of lotus-root-shaped, highly smooth and ordered TiO2 nanotube arrays (TiO2 NTs) by a simple and effective two-step anodization method. The TiO2 NTs prepared in the two-step anodization process (2-step TiO2 NTs) showed better surface smoothness and tube orderliness than those of TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). Under illumination of 100 mW/cm2 (AM 1.5, simulated solar light) in 1 M KOH solution, water was oxidized on the 2-step TiO2 NTs electrode with higher efficiency (incident-photon-to-current efficiency of 43.4% at 360 nm and photocurrent density of 0.90 mA/cm2 at 1.23 VRHE) than that on the 1-step TiO2 NTs electrode. The effective photon-to-hydrogen conversion efficiency was found to be 0.18% and 0.49% for 1-step TiO2 NTs and 2-step TiO2 NTs, respectively. These results suggested that the structural smoothness and orderliness of TiO2 NTs played an important role in improving the PEC water splitting application for hydrogen generation.  相似文献   

8.
CuO was introduced into porous TiO2 nanorod through impregnation method. Before the impregnation step, TiO2 nanorod was hydrothermally synthesized from TiO2 powder in aqueous NaOH solution and followed by thermal treatment at 450 °C. The structures and properties of impregnated samples were characterized using various techniques, including XRD, BET, XAS, TEM, and UV-DRS. Their photocatalytic performance on simultaneous hydrogen production from pure water and aqueous methanol solution was also investigated under solar light. It was found that CuO/TiO2 nanorod possessed a high surface area, good photocatalytic property and excellent hydrogen generation activity. Incorporation of Cu ions into the lattice framework of anatase TiO2 nanorod enhanced the efficiency in visible region at 438–730 nm. Moreover, the XAS results showed that some Cu ions formed solid solution in the TiO2 nanorod (CuxT1−xO2). However, the excessive incorporation of Cu ions did not improve any ability of anatase TiO2 nanorod for production of hydrogen from pure water splitting. This could be due to the excessive CuO agglomeration at outside-pores which blocked the sensitization of TiO2 nanorod. Only 1% Cu/TiO2 nanorod was found to be a remarkable and an efficient photocatalyst for hydrogen production under solar light from both pure water and sacrificial methanol splitting. The highest rate of hydrogen production of 139.03 μmol h−1 gcatalyst−1 was found in sacrificial methanol which was 3.24% higher than in pure water.  相似文献   

9.
Photoelectrocatalytic (PEC) water splitting provides an alternative to direct solar-to-fuel production. In this study, a novel heterostructure formed between a conjugated polymer [poly-2,6-diaminopyridine (PDAP)] and three-dimensional TiO2 microspheres was grown in situ on a Ti substrate (PDAP-3DTiO2MSs/Ti) and used as photoanode for water oxidation in alkaline media under AM 1.5G illumination. The PDAP-3DTiO2MSs/Ti can produce applied bias photon-to-current efficiency of 0.85% at 0.44 V vs. Pt and a photocurrent density of 1.56 mA cm−2 at 1.23 V vs. RHE. Moreover, PDAP-3DTiO2MSs/Ti displays impressive photoelectrochemical stability with 93% of its initial photocurrent being retained after 4 h of reaction. Based on physical-chemical characterization and photo-/electro-chemical measurements, the superior PEC water splitting performance of PDAP-3DTiO2MSs/Ti should benefit from the coexistence of Ti3+ and Ti4+ in 3DTiO2MSs, the light harvest capability of PDAP and the type II heterojunction formed between 3DTiO2MSs and PDAP, which result in the enhanced generation and separation of photocarriers.  相似文献   

10.
CdS has been widely used to modify TiO2-based photoanodes for photoelectrochemical (PEC) water splitting. Due to the poor interface contact between chalcogenides and oxides, however, such CdS modified TiO2 materials usually exhibit inefficient separation and transport of charges, leading to an unsatisfactory efficiency during the PEC water splitting process. Addressing this issue, we herein report a CdS/TiO2 nanotube array (CdS/TNA) photoanode that was fabricated through a successive ion layer absorption and reaction (SILAR) method with an additional subsequent annealing. This post-annealing process is essential to enhance the interface contact between the CdS and the TNAs, resulting in an accelerated transfer of photogenerated electrons from the CdS to the TNAs. In addition, the post-annealing also improves the light absorption capability of the CdS/TNA photoanode. The simultaneous enhancement of charge transport and light absorption provided by the post-annealing is essential for improving the PEC performance of the CdS/TNA photoanode. The CdS/TNA photoanode obtained by this strategy exhibits a much enhanced PEC performance in water splitting, and its photocurrent density and solar-to-hydrogen conversion efficiency could reach 4.56 mA cm−2 at 1.23 V vs. reversible hydrogen electrode and 5.61%, respectively. This simple but effective route can provide a general strategy for obtaining high-performance oxide-based photoelectrodes.  相似文献   

11.
Hydrogen production through photoelectrochemical (PEC) water splitting on photocatalyst is a green and clean method. In this study, we use density functional theory (DFT) calculations to find that the cage-like InP quantum dots (QDs) sensitized TiO2 is an effective photocatalyst for PEC water splitting under visible-light. A 16-ps first-principle molecular dynamics (FPMD) simulation results indicate that the cage-like InP-12, InP-16, InP-20, InP-24, InP-28, and InP-36 QDs are stable at room temperature (300 K). Furthermore, the calculated energy gaps of InP-16, InP-20, InP-24, InP-28, and InP-36 QDs are about 2.0 eV, which are suitable for visible-light absorption. Stable InP-20/TiO2 heterojunction structure was also obtained by FPMD simulation, and the electronic structure calculation result indicates that the InP-20/TiO2 heterojunction has a favorable type-II band aligment, which could prevent the recombination of photoexcited carriers. Finally, the possible reaction pathways of hydrogen production on InP-20/TiO2 heterojunction were investigated. It is found that energy barrier of hydrogen production of the InP-20/TiO2 is 2.56 eV lower than pure TiO2. Our calculations imply that InP QDs sensitized anatase TiO2 is an effective photocatalyst for visible-light PEC water splitting.  相似文献   

12.
Conversion of solar energy into hydrogen energy via photoelectrochemical (PEC) water splitting is one of the most promising approaches for generation of clean and sustainable hydrogen energy in order to address the alarming global energy crisis and environmental problems. To achieve superior PEC performance and solar to hydrogen efficiency (STH), identification, synthesis, and development of efficient photoelectrocatalysts with suitable band gap and optoelectronic properties along with high PEC activity and durability is highly imperative. With the aim of improving the performance of our previously reported bilayer photoanode of WO3 and Nb and N co-doped SnO2 nanotubes i.e. WO3-(Sn0.95Nb0.05)O2:N NTs, herein, we report a simple and efficient strategy of molybdenum (Mo) doping into the WO3 lattice to tailor the optoelectronic properties such as band gap, charge transfer resistance, and carrier density, etc. The Mo doped bilayer i.e. (W0.98Mo0.02)O3-(Sn0.95Nb0.05)O2:N revealed a higher light absorption ability with reduced band gap (1.88 eV) in comparison to that of the undoped bilayer (1.94 eV). In addition, Mo incorporation offered improvements in charge carrier density, photocurrent density, with reduction in charge transfer resistance, contributing to a STH (~3.12%), an applied bias photon-to-current efficiency (ABPE ~ 8% at 0.4 V), including a carrier density (Nd ~ 7.26 × 1022 cm?3) superior to that of the undoped bilayer photoanode (STH ~2%, ABPE ~ 5.76%, and Nd ~5.11 × 1022 cm?3, respectively). The substitution of Mo6+ for W6+ in the monoclinic lattice, forming the W–O–Mo bonds altered the band structure, realizing further enchantments in the PEC reaction and charge transfer kinetics. Additionally, doped bilayer photoanode revealed excellent long term PEC stability under illumination, suggesting its robustness for PEC water splitting. The present work herein provides a simple and effective Mo doping approach for generation of high performance photoanodes for PEC water splitting.  相似文献   

13.
Photon management involving particularly an up-conversion process is proposed as a relatively novel strategy for improving the efficiency of hydrogen generation in photoelectrochemical cells (PEC) with wide-band gap photoanodes. Optically active photoanode has been constructed by electrodeposition of titanium dioxide nanopowders containing Nd3+ ions, synthesized via a sol-gel method, onto ITO/TiO2(thin film) substrates. Thin films of TiO2 have been deposited by means of RF magnetron sputtering in an ultra-high-vacuum system. X-ray diffraction, scanning electron microscopy, UV-VIS-NIR spectrophotometry, and photoluminescence have been applied to assess the properties of photoanodes. In experiments involving photon-assisted water splitting, an external up-converter containing Yb3+/Er3+ rare-earth ions has been used. Photocurrent as a function of voltage (VB) under illumination with white light is relatively high (280 μA at VB = 0 V) for pure TiO2 thin films and it is not affected by the electrodeposition of TiO2:Nd3+ powders. NIR-driven up-conversion with laser excitation at λ = 980 nm has been found responsible for a 13-fold increase in photocurrent at VB = 0 V in the modified PEC configuration.  相似文献   

14.
Self-doping of oxygen vacancies (VO) states into TiO2-based nanotubes was an efficient way for improving photoelectrochemical (PEC) water splitting properties. Here we induced oxygen vacancies into Si-doped TiO2 (Ti–Si–O) nanotubes on Ti–Si alloy via a facile electrochemical surface reduction, and applied it for PEC water splitting. Systematic studies revealed that the self-doped oxygen vacancies not only promoted optical absorption of the doped nanotubes but also enhanced separation-transport processes of the photo-generated charge carriers, and thus resulted in improved PEC water splitting properties. The VO/Ti–Si–O co-doping system exhibited a higher photocurrent density of 1.63 mA/cm2 at 0 V vs. Ag/AgCl. Corresponding solar-to-hydrogen efficiency could reach 0.81%, which was about 5.4 times that of undoped TiO2. It's believed that elements doping and oxygen vacancies self-doping synergistic strategy employed in this work, may provide theoretical and practical significance for designing and fabricating efficient TiO2-based nanostructures photoanodes in PEC water splitting for boosted solar-to-hydrogen conversion.  相似文献   

15.
Photo-induced reforming of methanol, ethanol, glycerol and phenol at room temperature for hydrogen production was investigated with the use of ultra-small Pt nanoparticles (NPs) loaded on TiO2 nanotubes (NTs). The Pt NPs with diameters between 1.1 and 1.3 nm were deposited on TiO2 NTs by DC-magnetron sputtering (DC-MS) technique. The photocatalytic hydrogen rate achieved an optimum value for a loading of about 1 wt% of Pt. Apparent quantum yield for hydrogen generation was measured for methanol and ethanol water solutions reaching a maximum of 16% under irradiation with a wavelength of 313 nm in methanol/water solution (1/8 v/v). Pt NPs loaded on TiO2 NTs represented also a true water splitting catalyst under UV irradiation and pure distilled water. DC-MS method appears to be a technologically simple, ecologically benign and potentially low-cost process for production of an efficient photocatalyst loaded with ultra-small NPs with precise size control.  相似文献   

16.
Highly-ordered TiO2 nanotube arrays (TNTAs) were fabricated on Ti sheets by electrochemical anodization. Uniform Pt nanoparticles with an average diameter of 3 nm could be successfully located on the TiO2 nanotubes on only one side (Pt/TNTAs) or both sides of the Ti sheet (Pt/TNTAs/Pt). Pt/TNTAs, the single-sided Pt deposited TNTAs, could be directly used to split water without a counter electrode. The hydrogen evolution rate can reach 120 μmol h−1 cm−2 in a mixed solution of 0.5 M Na2SO4 and 0.5 M ethylene glycol without any applied bias, which is six times of that by the pure TNTAs. In comparison to the traditional three electrode system, this single-sided Pt deposited TNTAs is a much more simple and efficient water splitting system. Meanwhile, the photoelectrical conversion mechanism has been investigated in detail.  相似文献   

17.
Mesoporous TiO2/AC, Pt/TiO2 and Pt/TiO2/AC (AC = activated carbon) nanocomposites were synthesized by functionalizing the activated carbon using acid treatment and sol–gel method. Photochemical deposition method was used for Pt loading. The nano-photocatalysts were characterized using XRD, SEM, DRS, BET, FTIR, XPS, CHN and ICP methods. The hydrogen production, under UV light irradiation in an aqueous suspension containing methanol has been studied. The effect of Pt, methanol and activated carbon were investigated. The results show that the activated carbon and Pt together improve the hydrogen production via water splitting. Also methanol acts as a good hole scavenger. Mesoporous Pt/TiO2/AC nanocomposite is the most efficient photocatalyst for hydrogen production compared to TiO2/AC, Pt/TiO2 and the commercial photocatalyst P25 under the same photoreaction conditions. Using Pt/TiO2/AC, the rate of hydrogen production is 7490 μmol (h g catal.)−1 that is about 75 times higher than that of the P25 photocatalyst.  相似文献   

18.
Efficient photoelectrochemical (PEC) water splitting is crucial for future energy and sustainable world. We here report on the improvement of PEC activity of anodic TiO2 nanotubes (TNTs) by enhancing tube ordering and subsequent electrochemical reduction. TNTs were prepared by two-step anodic oxidisation from an organic electrolyte containing fluoride ions. The effects of first-step anodisation time on the ordering of TNTs and subsequent electrolytic reduction were investigated on the PEC performance under simulated solar light spectrum. The photocurrent densities of TNTs anodised for 1 h, 4 h and subsequently reduced are about 25.12 μA cm−2, 51.76 μA cm−2 and 126.89 μA cm−2, respectively, at 1.23 V vs RHE and their conversion efficiency of light to electrical energy achieved are about 0.016%, 0.04% and 0.08% respectively. Electrochemical impedance spectroscopy (ESI) curves revealed the improved PEC water splitting confirmed by sharper charge carrier separation and enhanced charge transfer in highly ordered pristine and black TNTs. This improvement of PEC in dopant-free TNT is at the first instance interpreted by enhancing TNT ordering and uniformity achieved by prolonging of the first-step anodisation time and its effect on the electronic band structure of TNTs. This significant effect on PEC performance of pristine TNT under visible light absorption takes place due to the induced surface defects and slower recombination rates of hole and electron. This demonstrates an efficient economic materials production appraoch for PEC hydrogen production.  相似文献   

19.
A novel system of CdSe quantum dots (QDs) sensitized porous hematite (α-Fe2O3) films has been investigated as a potential photoelectrode for hydrogen generation via photoelectrochemical (PEC) splitting of water. Before sensitization, nanoporous hematite thin films were prepared by spray pyrolysis. Characterizations for crystalline phase formation, crystallite size, absorption spectra, and flatband potential were carried out to analyze PEC data. Loading time of sensitizer to hematite thin films was found to be crucial in affecting its PEC properties. Film having sensitizer loading time as 42 h exhibited best photocurrent density of 550 μA cm−2 at 1.0 V versus SCE. Current study, for the first time, explores the possibility of using low band gap QDs sensitization on a low band gap film, hematite in PEC splitting of water.  相似文献   

20.
Solar-driven photocatalytic hydrogen generation by splitting water molecules requires an efficient visible light active photocatalyst. This work reports an improved hydrogen evolution activity of visible light active TiO2-x photocatalyst by introducing reduced graphene oxide via an eco-friendly and cost-effective hydrothermal method. This process facilitates graphene oxide reduction and incorporates intrinsic defects in TiO2 lattice at a one-pot reaction process. The characteristic studies reveal that RGO/TiO2-x nanocomposites were sufficiently durable and efficient for photocatalytic hydrogen generation under the visible light spectrum. The altered band gap of TiO2-x rationally promotes the visible light absorption, and the RGO sheets present in the composites suppresses the electron-hole recombination, which accelerates the charge transfer. Hence, the noble metal-free RGO/TiO2-x photocatalyst exhibited hydrogen production with a rate of 13.6 mmol h?1g?1cat. under solar illumination. The appreciable photocatalytic hydrogen generation activity of 947.2 μmol h?1g?1cat with 117 μAcm?2 photocurrent density was observed under visible light (>450 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号