首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
定义二元函数f(x,y)=xy 1,容易验证它满足性质: (1)f(x,0)=1; (2)f(f(x,y),z)=f(z,xy) z. 事实上,f(f(x,y),z)=f(x,y)·z 1=(xy 1)z 1=(z·xy 1) z=f(z,xy) z.  相似文献   

2.
《数学通报》82年第2期与第8期,相继发表了两篇论述二次曲线弦的中点及其应用的文章。二次曲线弦的中点的一个主要问题,是弦的斜率如何用它的中点坐标表示。本文应用微分中值定理给出一般二次曲线弦的斜率公式。一、微分中值定理的一个特例我们知道,二元函数的微分中值定理是:设函数f(x,y)在闭区域D上有定义且连续,而且在区域D内部有连续偏导数f′_x,f′_y。那末,对于定义域中两点M(x,y)、M_1(x+△x,y+△y),有公式△f(x,y)=f′x(x+θ△x,y+θ△y)△x+f′y(x+θ△x,y+θ△y)△y其中θ∈(0.1)区间。一般地说,我们很难定θ具体的数值。仅在少数的情况下,可以确定它。下面证明当f(x,y)是二元二次函数时,微分中值定理中的θ是1/2。  相似文献   

3.
程麟趾  李程宽 《应用数学》1992,5(4):103-105
在古典分析中,已引入: 定义1 设f∈L_p(-∞,+∞),g∈L_q(-∞,+∞),其中1≤p,q≤+∞,满足1/p+1/q=1,则f和g的卷积定义为: 利用直积的概念,Schwartz L.给出了广义函数卷积的一般定义. 定义2 设f,g是两个广义函数,定义f和g的卷积为: (f*g,φ=(f(x)×g(y),φ(x+y)),φ∈D. 但是,在这里要指出,φ(x+y)已经不是(x,y)空间中的具有有界支集的函数,因而一般地说,定义2是没有意义的. 但对下面两种情况,定义2是有意义的. (1)广义函数f,g之一的支集是有界的; (2)两个广义函数f,g的支集都是同一方向有界的. 1973年Jones D S.研究了广义函数卷积,给出了另外一种广义函数卷积定义.  相似文献   

4.
<正>抽象函数问题是高中数学的一个难点.抽象函数题解法灵活,技巧性强.本文介绍判断抽象函数奇偶性的方法和技巧,供同学们参考.一、直接利用奇偶性的定义例1若函数y=f(x)和y=g(x)有相同的定义域,且都不是常数函数,对定义中任意x有f(x)+f(-x)=0,g(x)·g(-x)=1,且当x≠0时,g(x)≠1,试判断F(x)=  相似文献   

5.
赵春祥 《中学数学》2003,(10):21-22
我们把未给出具体解析式的函数称为抽象函数 .由于这种表现形式的抽象性 ,使得直接求解思路难寻 .解这类问题可以通过化抽象为具体的方法 ,即赋予恰当的数值或代数式 ,经过运算与推理 ,最后得出结论 .下面分类予以说明 .1  判断函数的奇偶性例 1 若 f ( x + y) =f ( x) + f ( y)对于任意实数 x、y都成立 ,且 f( x)不恒等于零 ,判断函数 f ( x)的奇偶性 .解 在 f( x + y) =f ( x) + f ( y)中令x =y =0 ,得 f( 0 ) =0 .又在f ( x + y) =f( x) + f ( y)中令 y =- x,这样就有  f ( x - x) =f ( x) + f( - x) ,即 f ( 0 ) =f ( x) + f ( - x)…  相似文献   

6.
<正> 现行《数学分析》和《高等数学》各本教材中,都有二元函数的可微性充分条件的定理为:如果函数z=f(x,y)的偏导数?z/?x,?z/?y在点P(x,y)连续,则函数在该点的全微分存在。由于此定理要求两个偏导数在点(x_0,y_0)都连续,所以对函数f(x,y)的要求就比较苛刻,可是我们经常会遇到函数u=f(x,y)在点(x_0,y_0)的某一个偏导数存在但这个偏导数不连续,而  相似文献   

7.
对于如下问题,许多同学感到不知所措. 1.y=f(x)是定义在R上的函数,则y= f(1-x)与y=f(1+x)的图像关于__对称. 2.y=f(x)是定义在R上的函数,若f(1+ x)=f(1-x),则y=f(x)的图像关于__对称. 3.y=f(x)是定义在R上的函数,则y= f(x-1)与y=f(1-x)的图像关于__对称. 其实,此类问题涉及到了函数图像的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性,我们称其为互对称.  相似文献   

8.
二元函数极值的一种新判别方法   总被引:1,自引:0,他引:1  
通常都是利用二阶偏导数来判别二元函数 z =f (x,y)的极值存在性 .本文将讨论如何利用一阶偏导数来判别二元函数的极值存在性 .我们知道 ,在利用二阶偏导数判别 z =f (x,y)的极值时存在着两方面的不便 :1°要计算三个二阶偏导数值 ;2°当 [fxx .fyy -f2xy]( x0 ,y0 ) =0时 ,不能确定极值是否存在 .下面我们受一元函数极值判别的启发 ,利用一元函数的性质 ,研究如何用一阶偏导数判别二元函数的极值 .设二元函数 z =f (x,y)在点 (x0 ,y0 )的 δ-邻域 B| ( x0 ,y0 ) ={ (x,y) | 0 <(x -x0 ) 2 (y -y0 ) 2 <δ}内有连续偏导数 ,(x,y)是该邻域…  相似文献   

9.
我们这里所说的“抽象函数”是指那些没有给出函数的具体解析式,只给出一些特殊条件或特征的函数(如函数递推式,函数的定义域、函数性质及特征、部分图象等)尽管这类函数问题高度抽象,但往往有它所对应的具体函数模型.例如:f(x y)=f(x)·f(y)对应的是指数函数ax y=ax·ay,f(xy)=f(x) f(y),对应的是对数函数loga(xy)=logax logay,f(x y)=f(x) f(y)对应的是正比例函数k(x y)=kx ky,f(x±y)=f(x)g(y)±g(x)f(y)正弦型的三角函数.f(x±y)=f(x)f(y)g(x)g(y)余弦型的三角函数等等.除此之外面对抽象函数数学题,我们的解题思路常常有:(1)合理赋值,化…  相似文献   

10.
<正>抽象函数问题是高中数学的一个难点.抽象函数题解法灵活,技巧性强.本文介绍判断抽象函数奇偶性的方法和技巧,供同学们参考.一、直接利用奇偶性的定义例1若函数y=f(x)和y=g(x)有相同的定义域,且都不是常数函数,对定义中任意x有f(x)+f(-x)=0,g(x)·g(-x)=1,且当  相似文献   

11.
本文试图探索不动点问题的解题途径、规律和策略,权当对教材的补充.一、函数不动点的定义定义:对于函数f(x),若存在实数x0,满足f(x0)=x0,则称x0为f(x)的不动点.对此定义有两方面的理解(1)代数意义:若方程f(x)=x有实根x0,则y=f(x)有不动点x0.(2)几何意义:若函数y=f(x)与y=x有交点(x0,y0),则x0为y=f(x)的不动点.在实际问题中经常根据f(x)=x根据情况进行讨论,同时结合图形来求解有关不动点的问题.二、函数不动点的性质性质1:函数y=f(x)的反函数为y=f-1(x),-1不动点.证明:由f(x0)=x0,可得f-1(x0)=x0,所以x0是y=f-1(x)的不动点.性质2:定义在R的…  相似文献   

12.
<正> 判断二元函数极限不存在的方法一是找一种方式使f(x,y)不存在;二是找两种方式使f(x,y)都存在,但二者不相等. 寻找极限不存在的方式视函数所属的类型,根据f(x,y)的结构特点进行.现介绍几种常  相似文献   

13.
<正> 现行《数学分析》和《高等数学》各本教材中,都有二元函数的可微性充分条件的定理:如果函数z=f(x,y)的编导数在点P(x,y)连续,则函数在该点的全微分存在.由于此定理要求两个偏导数在点(x_0,y_0)都连续.这对函数f(x,y)的要求是比较苛刻的,可是我们经常会遇到函数u=f(z,y)在点(x_0,y_0)的某一个偏导数存在而不连续,而另一个偏导数存在且连续.遇到这类函数就无法用可微性充分条件定理去判定函数u=f(x,y)在点(x_0,y_0)是否可微.  相似文献   

14.
函数的单调性是函数的重要性质,也是高考的热点问题,若利用函数定义求解,一般较为复杂.但是利用导数求函数的单调就有效地解决了这一难题.一般地,设函数y=f(x)在某个区间内可导,如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数.下面对利用导数判断函数的单调性的几个注意点加以说明.一、f′(x)>0(<0)是f(x)为增(减)函数的充分不必要条件例1用导数来判断函数f(x)=x3(x∈  相似文献   

15.
给出了一元函数y=f(x)在x0可导与二元函数f(x)-f(y)/x-y在(x0,x0)处极限存在等价的条件,并通过反例系统地研究了它们之间的关系,指出了文[1]的错误.  相似文献   

16.
<正> 复变函数论是数学分析在复数域中的进一步发展和推广,它的许多概念和定理与数学分析中的理论相类似.复变函数的极限、连续以及导数与微分的定义.形式上和数学分析中一元函数的相应定义一致.比如,在数学分析的微分学中,对一元函数的导数是这样定义的:设函数y=f(x)在点x_0的某一邻域内有定义(包括x_0点),当自变量x在x_0处有增量(?)时,相应地函数有增量△y=f(x_0+△x)-f(z),当△x→0时,比值的极限存在,称此极限为函数y=f(x)在x_0处的导数.记为f’(x).复变函数的导数定义为:设函数w=f(z)在  相似文献   

17.
F为数域,f(x)、g(x)∈F[x]互素的充要条件是存在u(x),v(x)∈F[x],使得f(x)u(x)+g(x)v(x)=1. 在一元多项式的理论中,它起着重要作用。先给出两个二元多项式互素的定义,再把上述结果推广到二元多项式。定义f(x,y),g(x,y)∈F[x,y],如果除零次多项式外,它们没有次数大于零的公因式,则称f(x,y)与g(x,y)是互素的。上述结果可以推广到一般的域P上,而充  相似文献   

18.
<正> 1.xoy 平面上有两个圆C_1:(x-1)~2+(y-1)~2=1,C_2:(x+2)~2+(y+2)~2=4,求作一个在全平面连续,且满足0≤f(x,y)≤1的二元函数,f(x,y),使得,f(x,y)在C_1之内部取值1,在 C_2之内部取值零.2.你能否求出最小正数 k,使得下列不等式成立:  相似文献   

19.
<正> §1 问题的提出例1 设二元函数f(x,y)=x+y,平面单位向量l的方向如图1所示,试求f(x,y)在O(0,0)点处沿l方向的方向导数  相似文献   

20.
设函数 f ( t)在 [a,b]上连续 ,对任意 x,y∈ [a,b],x≠ y,定义Φ( x,y) =1x -y∫xyf ( t) dt则下面结果成立 :( 1 )若 f( t)是关于 t的单调不减函数 ,则 Φ( x,y)是关于 x和 y的单调不减函数 ;( 2 )若 f″( t)≥ 0 ,则 2 Φ x2 ≥ 0 , 2 Φ x y= 2 Φ y x≥ 0 , 2 Φ y2 ≥ 0  证明  ( 1 ) Φ x=( x -y) f ( x) -∫xyf ( t) dt( x -y) 2 =f ( x) -f (ξ)x -y ≥ 0 ,ξ∈ [x,y]或ξ∈ [y,x]由 x,y的对称性知 Φ y≥ 0 ,因此 Φ( x,y)是关于 x和 y的单调不减函数。( 2 )  2Φ x2 =( x -y) 2 f′( x) -2 ( x -y) f ( x) +2 ∫xyf ( t) d…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号