首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
We report on the cascade of quantum phase transitions exhibited by tunnel-coupled edge states across a quantum Hall line junction. We identify a series of quantum critical points between successive strong and weak tunneling regimes in the zero-bias conductance. Scaling analysis shows that the conductance near the critical magnetic fields B(c) is a function of a single scaling argument /B-B(c)/T(-kappa), where the exponent kappa=0.42. This puzzling resemblance to a quantum Hall-insulator transition points to the importance of interedge correlation between the coupled edge states.  相似文献   

2.
In quantum Hall systems with two narrow constrictions, tunneling between opposite edges can give rise to quantum interference and Aharonov-Bohm-like oscillations of the conductance. When there is an integer quantized Hall state within the constrictions, a region between them, with higher electron density, may form a compressible island. Electron tunneling through this island can lead to residual transport, modulated by Coulomb-blockade-type effects. We find that the coupling between the fully occupied lower Landau levels and the higher-partially occupied level gives rise to flux subperiods smaller than one flux quantum. We generalize this scenario to other geometries and to fractional quantum Hall systems, and compare our predictions to experiments.  相似文献   

3.
We report experiments on resonant tunneling through a quantum antidot in the fractional quantum Hall regime. The envelope of the conductance peaks indicates tunneling via two resonant states, one of them bound on the lithographic antidot, the other on a hill of the disorder potential. Moreover, our analysis indicates that the coherent tunneling rate between the two states is an order of magnitude higher than the phase breaking rate, thus giving evidence for a coherently coupled "antidot molecule."  相似文献   

4.
We study the Josephson-like interlayer tunneling signature of the strongly correlated nuT=1 quantum Hall phase in bilayer two-dimensional electron systems as a function of the layer separation, temperature, and interlayer charge imbalance. Our results offer strong evidence that a finite temperature phase transition separates the interlayer coherent phase from incoherent phases which lack strong interlayer correlations. The transition temperature is dependent on both the layer spacing and charge imbalance between the layers.  相似文献   

5.
We present a model of dissipative transport in the fractional quantum Hall regime. Our model takes account of tunneling through saddle points in the effective potential for excitations created by impurities. We predict the temperature range over which activated behavior is observed and explain why this range nearly always corresponds to around a factor two in temperature in both integer quantum Hall and fractional quantum Hall systems. We identify the ratio of the gap observed in the activated behavior and the temperature of the inflection point in the Arrhenius plot as an important diagnostic for determining the importance of tunneling in real samples.  相似文献   

6.
We investigated spin-dependent tunneling conductance properties in fully epitaxial double MgO barrier magnetic tunnel junctions with layered nanoscale Fe islands as a middle layer. Clear oscillations of the tunneling conductance were observed as a function of the bias voltage. The oscillation, which depends on the middle layer thickness and the magnetization configuration, is interpreted by the modulation of tunneling conductance due to the spin-polarized quantum well states created in the middle Fe layer. This first observation of the quantum size effect in the fully epitaxial double barrier magnetic tunnel junction indicates great potential for the development of the spin-dependent resonant tunneling effect in coherent tunneling regime.  相似文献   

7.
We report resonant tunneling experiments in a quantum antidot sample in the integer quantum Hall regime. In particular, we have measured the temperature T dependence of the peak value of a conductance peak on the i = 2 plateau, where there are two peaks per magnetic flux quantum straight phi(0). We observe a T-1 dependence as expected when tunneling through only one electron state is possible. This result is incompatible with tunneling through a compressible ring of several degenerate states. We also observe, for the first time, three conductance peaks per straight phi(0) on the i = 3 plateau.  相似文献   

8.
We show that the particle-hole conjugate of the Pfaffian state-or "anti-Pfaffian" state-is in a different universality class from the Pfaffian state, with different topological order. The two states can be distinguished easily by their edge physics: their edges differ in both their thermal Hall conductance and their tunneling exponents. At the same time, the two states are exactly degenerate in energy for a nu=5/2 quantum Hall system in the idealized limit of zero Landau level mixing. Thus, both are good candidates for the observed sigma_{xy}=5/2(e;{2}/h) quantum Hall plateau.  相似文献   

9.
We report on the study of cleaved-edge-overgrown line junctions with a serendipitously created narrow opening in an otherwise thin, precise line barrier. Two sets of zero-bias anomalies are observed with an enhanced conductance for filling factors ν>1 and a strongly suppressed conductance for ν<1. A transition between the two behaviors is found near ν≈1. The zero-bias anomaly (ZBA) line shapes find explanation in Luttinger liquid models of tunneling between quantum Hall edge states. The ZBA for ν<1 occurs from strong backscattering induced by suppression of quasiparticle tunneling between the edge channels for the n=0 Landau levels. The ZBA for ν>1 arises from weak tunneling of quasiparticles between the n=1 edge channels.  相似文献   

10.
Recent experiments have studied the tunneling current between the edges of a fractional quantum Hall liquid as a function of temperature and voltage. The results of the experiment are puzzling because at "high" temperature (600-900 mK) the behavior of the tunneling conductance is consistent with the theory of tunneling between chiral Luttinger liquids, but at low temperature it strongly deviates from that prediction dropping to zero with decreasing temperature. In this Letter we suggest a possible explanation of this behavior in terms of the strong temperature dependence of the tunneling amplitude.  相似文献   

11.
12.
We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The regions of parameters where the macroscopic quantum localization of the relative atomic population occurs are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely, coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscillations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances are calculated for population of atomic and molecular condensates and the possibility of quadrature squeezing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel coupling between two AMBEC leads to correlations in quantum statistics.Received: 22 May 2004, Published online: 10 August 2004PACS: 03.75.-b Matter waves - 03.75.Gg Entanglement and decoherence in Bose-Einstein condensates - 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices and topological excitations - 05.30.Jp Boson systems  相似文献   

13.
We report on the low temperature tunneling characteristics of two-dimensional lateral tunnel junctions (2DLTJs) consisting of two coplanar two-dimensional electron systems separated by an in-plane tunnel barrier. The tunneling conductance of the 2DLTJ exhibits a characteristic dip at small voltages—consistent with the phenomenon of zero-bias anomaly in low-dimensional tunnel junctions—and a broad conductance peak at the Coulombic energy scale. The conductance peak remains robust under magnetic fields well into the quantum Hall regime. We identify the broad conductance maxima as the signature of the pseudogap in the tunneling density of states below the characteristic Coulomb interaction energy of the 2DLTJ.  相似文献   

14.
We show that gated bilayer graphene hosts a strong topological insulator (TI) phase in the presence of Rashba spin-orbit (SO) coupling. We find that gated bilayer graphene under preserved time-reversal symmetry is a quantum valley Hall insulator for small Rashba SO coupling λ(R), and transitions to a strong TI when λ(R)>√[U(2)+t(⊥)(2)], where U and t(⊥) are, respectively, the interlayer potential and tunneling energy. Different from a conventional quantum spin Hall state, the edge modes of our strong TI phase exhibit both spin and valley filtering, and thus share the properties of both quantum spin Hall and quantum valley Hall insulators. The strong TI phase remains robust in the presence of weak graphene intrinsic SO coupling.  相似文献   

15.
We discuss the interplay between transport and intrinsic dissipation in quantum Hall bilayers, within the framework of a simple thought experiment. We compute, for the first time, quantum corrections to the semiclassical dynamics of this system. This allows us to reinterpret tunneling measurements on these systems. We find a strong peak in the zero-temperature tunneling current that arises from the decay of Josephson-like oscillations into incoherent charge fluctuations. In the presence of an in-plane field, resonances in the tunneling current develop an asymmetric line shape.  相似文献   

16.
Transport spectroscopy reveals the microscopic features of few-electron quantum dots which justify the nameartificial atoms. New physics evolve when two quantum dots are coupled by a tunneling barrier. We study, both theoretically and experimentally, the tunneling spectroscopy on a double quantum dot. A detailed lineshape analysis of the conductance resonances proves that off-resonant coherent interdot tunneling governs transport through this system, while tunneling into the double quantum dot occurs resonantly. This coherent interdot tunneling witnesses the evolution of a delocalized electronic state which can be compared to a valence electron of thisartificial molecule.  相似文献   

17.
We discuss the Luttinger liquid behaviour of a semiconducting quantum wire. We show that the measured value of the bulk critical exponent, αbulk, for the tunneling density of states can be easily calculated. Then, the problem of the transport through a quantum dot formed by two quantum point contacts along the quantum wire, weakly coupled to spinless Tomonaga-Luttinger liquids is studied, including the action of a strong transverse magnetic field B. The known magnetic dependent peaks of the conductance, G(B), in the ballistic regime at a very low temperature, T, have to be reflected also in the transport at higher T and in different regimes. The temperature dependence of the maximum Gmax of the conductance peak, according to the Correlated Sequential Tunneling theory, yields the power law Gmax∝T2α end-1, with the critical exponent, αend, strongly reduced by B. This behaviour suggests the use of a similar device as a magnetic field modulated transistor.  相似文献   

18.
《Physics letters. A》1997,229(6):392-400
We analyze the bilayer quantum Hall (QH) system by mapping it to the monolayer QH system with spin degrees of freedom. By this mapping the tunneling interaction term is identified with the Zeeman term. We clarify the mechanism of a spontaneous development of quantum coherence based on the Chern-Simons gauge theory with the lowest-Landau-level projection taken into account. The symmetry group is found to be W × SU(2), which says that the spin rotation affects the total electron density nearby. Using it extensively we construct the Landau-Ginzburg theory of the coherent mode. Skyrmion excitations are topological solitions in this coherent mode. We point out that they are detectable by measuring the Hall current distribution.  相似文献   

19.
We examine the effects of electron-electron interactions on transport between edge states in a multilayer integer quantum Hall system. The edge states of such a system, coupled by interlayer tunneling, form a two-dimensional, chiral metal at the sample surface. We calculate the temperature-dependent conductivity and the amplitude of conductance fluctuations in this chiral metal, treating Coulomb interactions and disorder exactly in the weak-tunneling limit. We find that the conductivity increases with increasing temperature, as observed in recent experiments, and we show that the correlation length characterizing conductance fluctuations varies inversely with temperature.  相似文献   

20.
Coulomb blockade oscillations are found in the electron thermal conductance of a quantum dot (nanocrystal) in the regime of weak coupling with two electrode leads that is calculated within a linear response theory. An analytical expression is obtained in the quantum limit where electron level spacing is non-negligible. The effect of confinement on the electron thermal conductance is thereby explicitly shown. It is shown that in the quantum limit the periodicity of the Coulomb-blockade oscillations of the electron thermal conductance is the same as of the conductance. The shape and the magnitude of the electron thermal conductance depend explicitly on the temperature and the energy level spacing. It is found that the electron thermal conductance decreases nearly exponentially with increasing confinement and decreasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号