首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
This paper utilizes multi-methods,such as core observation,slice identification,isotope analysis,trace element analysis,fluid inclusion technique and so on,to study the causes of the dolomite in the Nanpu Sag and the origins of the dolomite reservoir.The study results show that the forming environment of dolomite in the Nanpu Sag is a fresh-water lake environment,and the dolomite is the product of dolomitization which is caused by volcanic thermal fluids in the Early Dongying period.With the development of intergranular pores in the dolomitization process,a lot of dissolved pores/vugs and fractures were formed by denudation in the later periods because of the influence of thermal fluids including the associated fluids of volcanic activities and the expelled hydrocarbon fluids of the source rocks.On the whole,these secondary dissolution spaces greatly enhance the reservoir ability of the dolomite,and there are enough reservoir spaces in the dolomite in the Nanpu Sag.  相似文献   

2.
Dolostones in the Cambrian Longwangmiao Formation have become one of the most significant gas exploration domains in China. Over a trillion cubic meters of gas reservoirs have been discovered in the Gaoshiti-Moxi area; however, the origins and distribution of the dolostone reservoirs are not well understood. This work discussed the geology and geochemistry of the dolostone reservoirs in the Longwangmiao Formation to determine their origin and distribution. Two understandings are acquired: firstly, a carbonate ramp provided excellent conditions for grain beach deposition, while the presence of a hypersaline lake was favorable for the contemporaneous dolomitization of grain beach deposits. Petrographic and geochemical evidence further confirm that the Longwangmiao dolostone was formed during the contemporaneous stage. Secondly, the reservoir characteristics indicate that the grain beach sediments provide material basis for the development of the Longwangmiao dolostone reservoirs. Reservoir dissolution simulation experiments show that the porosity of the reservoirs was formed by dissolution during contemporaneous and burial stages. The dissolution pores formed during the contemporaneous stage were controlled by sequence interfaces. The large scale dissolution vugs formed during the burial stage subsequently spread along the pre-existing porosity and fracture zones. This study therefore identified that the development of grain dolostone reservoirs in a shallow water ramp under arid climatic conditions generally met the following conditions: (1) reefal beach deposits lay a foundation for reservoir development; (2) superficial conditions are an important determining factor for reservoir porosity; and (3) burial conditions provide environment for porosity preservation and modification.  相似文献   

3.
The Precambrian Dengying Formation is a set of large-scale, extensively dolomitized, carbonate reservoirs occurring within the Sichuan Basin. Petrographic and geochemical studies reveal dolomitization was a direct result of precipitation by chemically distinct fluids occurring at different times and at different intensities. Based on this evidence, dolomitization and multiple fluid flow events are analyzed, and three types of fluid evolution models are proposed. Results of analysis show that Precambrian Dengying Formation carbonates were deposited in a restricted peritidal environment(630–542 Ma). A high temperature and high Mg~(2+) concentration seawater was a direct result of dolomitization for the micrite matrix, and for fibrous aragonite in primary pores. Geochemical evidence shows low δ~(18)O values of micritic dolomite varying from-1.29‰ to-4.52‰ PDB, abundant light rare earth elements(REEs), and low dolomite order degrees. Microbes and meteoric water significantly altered dolomite original chemical signatures, resulting in algal micritic dolomite and the fine-grained, granular, dolosparite dolomite having very negative δ~(18)O values. Finely crystalline cement dolomite(536.3–280 Ma) and coarsely crystalline cement dolomite have a higher crystallization degree and higher order degree. The diagenetic sequence and fluid inclusion evidence imply a linear correlation between their burial depth and homogenization temperatures, which closely resemble the temperature of generated hydrocarbon. Compared with finely crystalline dolomite, precipitation of coarsely crystalline dolomite was more affected by restricted basinal fluids. In addition, there is a trend toward a more negative δ~(18)O value, higher salinity, higher Fe and Mn concentrations, REE-rich. Two periods of hydrothermal fluids are identified, as the exceptionally high temperatures as opposed to the temperatures of burial history, in addition to the presence of high salinity fluid inclusions. The early hydrothermal fluid flow event was characterized by hot magnesium-and silicon-rich fluids, as demonstrated by the recrystallized matrix dolomite that is intimately associated with flint, opal, and microcrystalline quartz in intergranular or intercrystalline pores. This event was likely the result of a seafloor hydrothermal chimney eruption during Episode I of the Tongwan Movement(536.3±5.5 Ma). In contrast, later hydrothermal fluids, which caused precipitation of saddle dolomite, were characterized by high salinity(15–16.05 wt% NaCl equivalent) and homogenization temperatures(250 to 265°C), δ~(18)O values that were more enriched, and REE signatures. Geochemical data and the paragenetic sequence indicate that this hydrothermal fluid was related to extensive Permian large igneous province activity(360–280 Ma). This study demonstrates the presence of complicated dolomitization processes occurring during various paleoclimates, tectonic cycles, and basinal fluids flow; results are a useful reference for these dolomitized Precambrian carbonates reservoirs.  相似文献   

4.
Fluid inclusions in minerals filled in pores of reservoir rocks can be used as a good indicator of pore genesis and development so as to shed light on oil generation,migration and accumulation.The relationship between pore evolution and oil generation has been established based on fluid inclusion studies on the Lower Ordovician carbonate reservoir strata in the Ordos Baisn,Northwest China.Seven stages of porosity development can be recogmized.i.e.,the penecontemporaneous,the early and middle-late diagenetic,the supergene,the early,middle and late re-burying stages.The dissolution pores an fissures formed in the supergene and middle-late reburying stage and the structural fractures formed in the late re-burying stage constitute the major traps of oil and gas.The major phase of oil migration and accumulation took place between Late Jurassic and Cretaceous,Corresponding to the middle and late re-burying stages.The generation and accumulation of oil can be closely related to Yenshanian tectonics.  相似文献   

5.
The Tepearasi Formation of the autochthonous Geyikdagi Group in the Central Tauride Belt, SE of Beysehir, is Dogger in age and consists dominantly of massive limestones and greyish dolomites occurring within the middle to upper sections. The total thickness of the dolomitic levels ranges from 100-300 m and laterally extends 500-700 m. Three types of dolomite were distinguished through petrographic analyses: homogeneous, mottled (saddle-crystalline) and joint-filling dolomite, which were interpreted to have formed in two different stages, early diagenetic and late diagenetic. The homogeneous dolomite of the early diagenetic stage is light-coloured and monotonous-textured and shows the form of a dolosparite mosaic. The mottled dolomite formed in the late diagenetic stage is light- to dark-coloured and coarsely granular idiomorphic. The other type of late diagenetic dolomite, described as the joint-filling type, presents a crystal growth pattern from the joint walls towards the centre of the joint space. I  相似文献   

6.
Having patch reefs,mud mounds and biostromes,the reef types are various in Silurian strata on the north & south margin of Sichuan basin.Owing to the simple regional tectonic movement,the diagenesis, process of the reef carbonate was “progressive diagenesis”which show that the process was from syngenesis,short time fresh water influence get have strongly influence on the reef limestones.Among them,the cementation,corroasion,silicification and dolomitization are the most important.During the burial diagenesis period,the pore spaces in the reefs were filled by calcite cements with multi-generations.The reservoir capacity of the reefs decreased because of the weak epidiagensis influence.The organisms skeletons have the strong influence and reflection to the diagenesis.The original pores and fractures of the reef limestones are mainly skeleton pores and body cavity with some fenestrae in the mudstones and thrombolites.Some intergranular pores and inter-spar crystal pores are in the grainstone.The secondary pores and fractures are epidiagenetically dissoved and corroded cavities and fractures well as structural fractures.According to the clay mineral thermal evolution and inclusions analysis.the period of primary migration of hydrocarbon closed to the burial diagenetic period of the reefs,which was about in the Early Triassic.There were at least two times hydrocarbon migration traces in the reefs,primary migration happened in Early Triassic and secondary migration was about the period of Himalayan orogeny.Because of the strong cementation,the pore spaces in the reef reservoirs derased.  相似文献   

7.
Multiple coal seams and interbedded rock assemblages formed in vertical progression due to the influence of multiple stages of sea level transgressions.Based on mercury injection experiment,low temperature liquid nitrogen experiment,porosity and permeability experiment and breakthrough pressure experiment,the vertical variation characteristics of coal-bearing strata in Gujiao block are explained in detail.The results of the mercury injection and low temperature liquid nitrogen experiments show that the pore structure characteristics fluctuate with increasing depth in the strata,with fewer micropores followed by transition pores.The BET specific surface area and average pore diameter of the Shanxi Formation are generally larger than those of the Taiyuan Formation.Due to the continuous cyclic sequence stratigraphy changes,the porosity,permeability,breakthrough pressure and breakthrough time of the samples show a certain cyclicity.Within the same sequence,the porosity is larger,and the permeability is smaller near the maximum flooding surface.Although the permeability of the sandstone samples is higher,the porosity is lower,and the breakthrough pressure and breakthrough times are greater.The strata in the study area formed in an oxidized environment that was affected by freshwater,and the pore structure of different lithologies is quite different.After the formation of sandstone,the intergranular pores generally underwent filling with secondary quartz,clay minerals and organic matter,resulting in low porosity and permeability.  相似文献   

8.
The Northern Qilian high-pressure metamorphic belt has experienced multiple deformation-metamorphism, which consists of at least four stages.In 550.8-526 Ma, eclogites were formed. High temperature and pressure caused the escape of a large quantity of gas-liquid fluids from rocks while silicate melt was generated. In the late stage, small amounts of CO2 and H2O infiltrating along fractures were introduced.In the formation of glaucophane schist (447-362 Ma), devolatilization reactions were dominated during the subduction-uplift stage of the paleoplate.In the uplift-exhumation stage (400-380 Ma) the increase of internal space of fractures in the rocks favoured fluid infiltration and concentration. These fluids participated in hydration reactions in the retro-metamorphism. The fluids participating in the mineral reactions have the compositions of CaCl2-NaCl-H2O.In subsequent thrusting (<380 Ma), the metamorphic terrain was uplifted to the shallower crust and ductile-shearing deformation took place, which c  相似文献   

9.
It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperature of fluid inclusions and diagenesis for beach- and reef-facies dolomite gas- bearing reservoirs in the Puguang Gas Field, northeastern Sichuan Basin, southern China. The first hydrocarbon generation and accumulation episode occurred in the Indosinian movement (late Middle Triassic). The sapropelic source rocks of the O3w (Upper Ordovician Wufeng Formation)-S1l (Lower Silurian Longmaxi Formation) were buried at depths of 2500 m to 3000 m with the paleogeothermal temperature ranging from 70℃ to 95℃, which yielded heavy oil with lower maturity. At the same time, intercrystalline pores, framework pores and corrosion caused by organic acid were formed within the organic reef facies of P2ch (Upper Permian Changxing Formation). And the first stage of hydrocarbon reservoir occurred, the level of surface porosity of residual solid bitumen {solid bitumen/ (solid bitumen + residual porosity)} was higher than 60%. The second episode occurred during the Middle Yanshanian movement (late Middle Jurassic). During that period, the mixed organic source rocks were deposited in an intra-platform sag during the Permian and sapropelic source rocks of O3w-S1l experienced a peak stage of crude oil or light oil and gas generation because they were buried at depths of 3500 m to 6800 m with paleogeothermal temperatures of 96-168℃. At that time, the level of surface porosity of residual solid bitumen of the T1f shoal facies reservoirs was between 25% and 35%, and the homogenization temperatures of the first and second stages of fluid inclusions varied from 100℃ to 150℃. The third episode occurred during the Late Yanshanian (Late Cretaceous) to the Himalayan movement. The hydrocarbon reservoirs formed during the T1f and P2ch had the deepest burial of 7700 m to 8700 m and paleogeotemperatu  相似文献   

10.
Stratabound epigenetic dolomite occurs in carbonate facies of the Barrandian basin (Silurian and Devonian), Czech Republic. The most intense dolomitization is developed in bioclastic calcarenites within the transition between micritic limestone and shaledominated Přídolí and Lochkov formations deposited on a carbonate slope. Medium-crystalline (100–400 μm), inclusion-rich, xenotopic matrix dolomite (δ 18O=−4.64 to −3.40‰ PDB;δ 13C=+1.05 to +1.85‰ PDB) which selectively replaced most of the bioclastic precursor is volumetrically the most important dolomite type. Coarse crystalline saddle dolomite (δ 18O=−8.04 to −5.14‰ PDB;δ 18C=+0.49 to +1.49 PDB) which precipitated in fractures and vugs within the matrix dolomite represents a later diagenetic dolomitization event. In some vugs, saddle dolomite coprecipitated with petroleum inclusion-rich authigenic quartz crystals and minor sulfides which, in turn, were post-dated by semisolid asphaltic bitumen. The interpretation of the dolomitization remains equivocal. Massive xenotopic dolomite, although generally characteristic of a deeper burial setting, may have been formed by a recrystallization of an earlier, possibly shallow burial dolomite. Deeper burial recrystallization by reactive basinal pore fluids that presumably migrated through the more permeable upper portion of the Přídolí sequence appears as a viable explanation for this dolomitization overprint. Saddle dolomite cement of the matrix dolomite is interpreted as the last dolomitization event that occurred during deep burial at the depth of the oil window zone. The presence of saddle dolomite, the fluid inclusion composition of associated quartz crystals, and vitrinite paleogeothermometry of adjacent sediments imply diagenetic burial temperatures as high as 160°C. Although high geothermal gradients in the past or the involvement of hydrothermally influenced basinal fluids can account for these elevated temperatures, burial heating beneath approximately 3-km-thick sedimentary overburden of presumably post-Givetian strata, no longer preserved in the basin, appears to be the most likely interpretation. This interpretaion may imply that the magnitude of post-Variscan erosion in the Barrandian area was substantially greater than previously thought.  相似文献   

11.
张静  张宝民  单秀琴 《地质通报》2017,36(4):664-675
塔里木、四川及鄂尔多斯盆地是中国中西部海相白云岩的主要发育地区。三大盆地重点层系海相白云岩新近的成因研究表明,大规模准同生白云岩和埋藏成因白云岩的发育均与蒸发台地密切相关。蒸发台地中由海水浓缩形成的富Mg~(2+)卤水一方面在准同生期,通过蒸发泵和下渗机制交代碳酸钙沉积物而形成与蒸发岩共生的准同生白云岩,另一方面作为富含Mg~(2+)的地层孔隙水,在准同生-浅埋藏期乃至中、深埋藏期,通过侧向渗透、侧向与垂向压实排挤和垂向热对流机制与粗结构的碳酸钙沉积物发生交代反应,在蒸发岩系周边和上下形成广泛分布的埋藏成因白云岩。与热流体作用有关的白云石化主要依靠构造断裂、裂缝、不同级次的层序界面、孔洞层等输导体系发生,分布较局限。热流体云化常表现为对先期白云岩进行叠加改造而形成热水改造白云岩。热流体性质不一,可以是深埋藏混合热水、深部循环水、地幔深部的岩浆热液等。白云石(岩)的生物成因不仅表现为微生物作用导致白云石直接沉淀,还表现为生物的存在与活动为白云石化作用提供Mg~(2+)和云化流体通道。由微生物和宏观藻释放出Mg~(2+),在埋藏期对方解石进行交代是各种富含藻类的灰岩中部分白云石的重要形成机制。生物扰动可明显改善岩石的孔渗性,从而显著促进白云石化作用的发生。  相似文献   

12.
埋藏白云石化作用是形成厚层块状白云岩的主要机制之一,但其形成过程一直存在争议。本文以塔里木盆地永安坝剖面蓬莱坝组为例进行解剖,在露头和薄片岩石学研究的基础上,利用激光U-Pb定年和同位素分析,剖析了蓬莱坝组白云岩形成时期及演化过程,取得三个方面的认识:(1)蓬莱坝组发育四种类型白云岩:藻纹层白云岩、自形-半自形细中晶白云岩、雾心亮边自形中晶白云岩和他形粗晶白云岩,不同类型白云岩垂向互层发育;(2)U-Pb定年结果显示蓬莱坝组受三期云化作用改造,分别为准同生期云化作用、晚奥陶世到志留纪浅埋藏云化作用(464±12Ma到433±22Ma)及泥盆纪埋藏云化作用(382±29Ma),浅埋藏云化作用会对准同生白云石造成重结晶,而埋藏云化作用表现为白云石次生加大,存在寒武系云化流体卷入,影响U-Pb定年;(3)规模白云岩的发育为沉积环境和构造埋藏演化史共同作用的结果,提出塔中北斜坡和塔北南缘为规模白云岩发育区,这对本区油气勘探具有重要的指导意义。  相似文献   

13.
鄂尔多斯盆地靖边气田马五1~4亚段属于陆表海蒸发碳酸盐潮坪相。潮上带(含)石膏结核白云岩和潮间带上部的含石膏晶模白云岩最有利于形成储层。马五1-4亚段碳酸盐岩经历了复杂的成岩作用,准同生期白云石化和膏化作用奠定了储层的物质基础;表生岩溶期选择性溶解作用构筑了储层的轮廓;埋藏期溶解作用和各种矿物充填作用,决定早期溶孔能否保存和储层最终状况。引入“负胶结物孔隙度”概念,更直观地反映了沉积作用对马五1-4亚段储层发育的控制作用。将沉积微相和成岩相研究有机地结合在一起,以简约的方式,用一套数字组合符号半定量地表达沉积微相和成岩相,在开发区块储层评价和预测上获得了良好效果。  相似文献   

14.
塔里木盆地塔中地区下奥陶统白云岩成因   总被引:5,自引:0,他引:5  
塔里木盆地塔中地区下奥陶统白云岩广泛发育,岩石类型复杂多样,主要包括结晶白云岩、残余颗粒白云岩、残余灰质白云岩、藻云岩、亮边雾心白云岩、环带白云岩及少量膏云岩等结构类型。白云岩交代现象明显,δ18O普遍为中—高负值(-3.2‰~-8.7‰);δ13C值基本为低中负值(-3‰~-0.77‰),Z值大多集中在118~123...  相似文献   

15.
田雯  陈刚  李文厚  吕剑文  李建东  杨超 《地质通报》2016,35(203):454-460
受古岩溶作用的影响,鄂尔多斯盆地靖边气田高桥区块形成了层位较稳定的溶蚀孔洞白云岩储层。利用钻井岩心、铸体薄片、阴极发光及地球化学手段等,对研究区马五41段白云岩储层埋藏环境下建设性成岩作用进行了系统研究。研究表明,区内埋藏环境下建设性成岩作用有埋藏白云石化作用、埋藏溶解作用、裂缝作用等。研究区晶粒白云岩C、O同位素比值与奥陶纪海水的C、O同位素值相比明显偏负,表明地层经历了埋藏白云石化作用,埋藏白云石化作用使得岩石体积缩小、岩石孔隙度有所增加,有利于晶间孔的形成。埋藏溶解作用可形成大量的溶蚀孔、洞、缝等储集空间,为油气的储集成藏提供了有利的场所。裂缝的发育增加了溶蚀孔洞的连通性,有效地提高了储层的孔隙度与渗透率。上述3种建设性成岩作用相互叠加配合,使得裂缝与原本存在的孔隙配套,对良好油气储集空间的形成起了决定性控制作用。  相似文献   

16.
从靖边潜台奥陶系马五段主要岩石类型出发,综合分析沉积特征和地球化学特征,认为靖边潜台奥陶系存在三种白云化作用:(1)泥粉晶云岩与硬石膏共生,形成于盐度较高的局限蒸发潮坪,为准同生白云化所形成;(2)粗粉晶云岩分布较局限,夹于与硬石膏共生的泥粉晶云岩层之间,不与硬石膏共生,但低有序度和略富钙的特征表明其为回流渗透白云化成因;(3)岩溶风化壳较发育区的孔洞缝中大量次生方解石的残余组构表明,去白云化之前的白云石以细砂晶为主,多为自形、半自形菱面体,部分具有环带构造和“亮边雾心”,形成温度为52.30℃~78.05℃,碳氧同位素特征与典型的埋藏白云石较接近,说明其为浅-中埋藏环境下形成的白云石。这三种白云化作用中,准同生白云化是最主要最普遍的白云化类型,其次是浅-中埋藏白云石,回流渗透白云化分布较局限。明确马五4亚段的白云化类型,对于重建岩相古地理、研究储层的形成机理、提高勘探的成功率有重要意义。  相似文献   

17.
四川盆地中部地区栖霞组的白云岩是该区主要储层,储层成因的主流观点是热液白云岩化.目前勘探实践发现,优质储渗体形成与早期相控岩溶作用有关.通过取芯及测录井资料进行了详细分析,研究结果表明,该类白云岩储层主要位于栖霞组中上部颗粒滩发育的地层中,按其宏微观产出状态可分为溶斑状云岩、溶洞充填云岩、针孔状基质云岩和致密基质云岩....  相似文献   

18.
Abstract Interpretation of seepage reflux dolomitization is commonly restricted to intervals containing evaporites even though several workers have modelled reflux of mesosaline brines. This study looked at the partially dolomitized forereef facies of the Capitan Formation to test the extent of reflux dolomitization and evaluate the possible role of the near‐backreef mesosaline carbonate lagoon as an alternative source of dolomitizing fluids. The Capitan Formation forereef facies ranges from 10% to 90% dolomite. Most of the dolomite is fabric preserving and formed during early burial after marine cementation, before and/or during evaporite cementation and before stylolitization. Within the forereef facies, dolomite follows depositional units, with debris‐flow and grain‐flow deposits the most dolomitized and turbidity‐current deposits the least. The amount of dolomite increases with stratigraphic age and decreases downslope. Within the reef facies, dolomite is restricted to haloes around fractures and primary cavities except where the reef facies lacks marine cements and, in contrast, is completely dolomitized. This dolomite distribution supports dolomitization by sinking fluids. Oxygen isotopic values for fabric‐preserving dolomite (δ18O = 0·9 ± 1·0‰, N = 101) support dolomitization by sea water to isotopically enriched sea water. These values are closer to the near‐backreef dolomite (δ18O = 2·1 ± 0·7‰, N = 48) than the hypersaline backreef dolomite (δ18O = 3·6 ± 0·9‰, N = 11). Therefore, the fabric‐preserving dolomite is consistent with dolomitization during seepage reflux of mainly mesosaline brines derived from the near‐backreef carbonate lagoon. The occurrence of mesosaline brine reflux in the Capitan Formation has important implications for dolomitization in forereef facies and elsewhere. First, any area with a restricted carbonate lagoon may be dolomitized by refluxing brines even if there are no evaporite facies present. Secondly, such brines may travel significant distances vertically provided permeable pathways (such as fractures) are present. Therefore, the absence of immediately overlying evaporite or restricted facies is not sufficient cause to eliminate reflux dolomitization from consideration.  相似文献   

19.
张永生 《沉积学报》2000,18(3):424-430
鄂尔多斯地区奥陶系马家沟群中部发育一套厚层块状白云岩。在西部地区定边至鄂托克旗一带,这套块状白云岩连续厚度达数百米。定探 1井揭示的最大厚度为 431m。自西向东,白云岩体由厚变薄,并与石灰岩呈指状交织。这套块状白云岩由粗粉晶-细晶白云石组成,斑状结构发育。常见云斑的边界为缝合线,这表明斑状白云石化明显受缝合线控制。白云岩有序度平均值为 0.85,CaCO3 摩尔含量平均为 5 0.6 5 g/mol。δ13 C的平均值为 0.6‰ (PDB),δ18O的平均值为 - 7.4‰ (PDB)。主体细晶白云石中液态包体常见,最低均一温度为 104℃,包体成分中含有大量的有机成分CH4 和无机成分H2 S。上述特征表明,这套白云岩是由深埋藏白云岩化作用形成的,它显示出良好的储集性能,是重要的后备储集岩。  相似文献   

20.
川西地区观雾山组白云岩储层储集空间主要为孔洞和裂缝两类.为弄清观雾山组白云岩储层孔洞成因、孔洞充填期次及演化,首先,通过对孔洞型白云岩储层发育规律与沉积相、层序关系的分析,结合第一期白云石胶结物形成与围岩白云石化的先后顺序,认为川西地区观雾山组白云岩储层孔洞为相控准同生岩溶形成;针对孔洞内不同期次白云石和方解石胶结物的包裹体均一温度、碳氧同位素、激光原位U-Pb同位素定年、锶同位素、稀土元素等分析,认为孔洞内胶结物形成于封闭的成岩环境,成岩流体为受下伏碎屑岩地层水加入改造的中泥盆世海水.观雾山组白云岩储层储集空间经历了三个演化阶段:沉积期-白云石化之前的孔洞及裂缝形成阶段、白云石化期间的围岩白云石化及第一期白云石胶结物形成阶段和中—深埋藏成岩期的孔隙定型阶段,其中中—深埋藏阶段是孔隙减少的主要阶段,造成约250的孔隙损失.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号