首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Impact of Soil Type and Compaction Conditions on Soil Water Characteristic   总被引:3,自引:0,他引:3  
Tests were conducted to determine the variation of water content and pore water suction for compacted clayey soils. The soils had varying amounts of clay fraction with plasticities ranging from low to high plasticity. The unsaturated soil behavior was investigated for six conditions, covering a range of compactive efforts and water contents. The experimental data were fit to four commonly used models for the water content-pore water suction relationship. Each model provided a satisfactory fit to the experimental data. However, the individual parameters obtained from the curve fits varied significantly between models. The soil water characteristic curves (SWCCs) were more sensitive to changes in compaction effort than changes in compaction water content. At similar water contents, the pore water suction increased with increasing compaction effort for each compaction condition and soil type. For all compaction conditions, the lowest plasticity soils retained the smallest water content and the highest plasticity soils retained the highest water content at a specified suction. In addition, SWCCs for soils compacted in the laboratory and in the field were similar.  相似文献   

2.
Volume changes due to wetting may occur in naturally deposited soils as well as earthen construction (e.g., compacted fills or embankments). Depending on the stress level, some soils exhibit increase in volume upon wetting (swell) while others may exhibit decrease in volume upon wetting (collapse). The work described in this paper focused on wetting-induced volume changes in compacted soils. Motivation for this work stemmed from observations of earthen structures that exhibit problematic behavior under wetting conditions, even though soils were compacted to engineering specifications (i.e., at or above minimum density and within moisture content ranges). Not only is this problematic behavior a concern but also the laboratory tests used to predict settlement of constructed facilities may not properly model the actual behavior of soil compacted under field conditions. For example, settlements experienced by compacted fills may be different from settlement predictions based on one-dimensional oedometer tests. These differences are partly related to the variations in the soil structure in tested specimens that arise because soil clods compacted in the laboratory are smaller than soil clods compacted in the field. The term “soil structure” includes the combined effects of soil fabric and interparticle forces. “Fabric” generally refers to the geometric arrangement of particles, whereas interparticle forces include physical and physicochemical interactions between particles. The soil structure in this case is associated with specimen preparation methods and is influenced by several factors including soil composition (including pore water chemistry), compaction method, clod sizes, initial moisture condition of clods, dry density or void ratio, and compaction moisture content. A laboratory research study was conducted to investigate the influence of variations in clod-size and structure on one-dimensional volume change, with emphasis on wetting-induced volume change, for nine different fine-grained soils. The results of the study suggest that the influence of structure in one-dimensional oedometer tests depends on soil type and nature of the clods in the compacted soil. Clayey soils appear to be influenced more by differences in structure, whereas silts or clayey sands of low plasticity (PI<10) do not appear to suffer as much from structure effects in one-dimensional oedometer tests. This is attributed to more extensive clod development in clayey soils. Furthermore, the moisture condition of clods appears to have an important influence on volume change behavior.  相似文献   

3.
Soil compaction quality control plays an important role in earthwork construction. Compacted dry density is only loosely related to the actual deformation of the compacted soil. Rather than using dry density as the controlling factor for compacted fills, it would be better to measure properties more closely related to soil compressibility. The Briaud compaction device (BCD) is a simple, small-strain, nondestructive testing apparatus that can be used to evaluate the modulus of compacted soils. The use of the BCD as a field testing device for compacted soil quality control may be more beneficial than the current practice of measuring in situ dry density. In this study, the laboratory procedures of the BCD were evaluated for compacted silt. The modulus determined by the BCD was compared to the dynamic elastic moduli (Young’s and shear moduli) determined from ultrasonic pulse velocity testing on the same compacted silt samples. The BCD modulus correlated well with the ultrasonic pulse velocity results with R2 value of 0.8 or better. Finally, a repeatability and reproducibility study conducted on the BCD showed a variation of 4% from the mean when only the soil properties were altered.  相似文献   

4.
Laboratory tests were conducted on three lateritic soil samples to illustrate some pertinent considerations in the design of compacted lateritic soil liners and covers. The three design parameters investigated are hydraulic conductivity, desiccation-induced volumetric shrinkage, and unconfined compressive strength. Test specimens were compacted at various molding water contents using four compactive efforts. The compaction conditions were shown to have some relationship with soil compaction using either the plasticity modulus or the plasticity product (i.e., clay index). For construction quality assurance purposes, the traditional approach was compared with the modern criterion. Deficiencies associated with the traditional approach for soil liners found in literature also apply to lateritic soils. Overall acceptable zones were constructed on the compaction plane to meet design objectives for hydraulic conductivity, volumetric shrinkage strains, and unconfined compressive strength. The line of optimums was identified as a suitable lower bound for overall acceptable zones of lateritic soils. The volumetric shrinkage strain was also identified as the second most important design parameter for lateritic soils. The shapes of the acceptable zones were affected by the fines contents of the soils.  相似文献   

5.
Critical Review of the Methodologies Employed for Soil Suction Measurement   总被引:3,自引:0,他引:3  
Modeling the behavior of unsaturated soils necessitates the measurement of soil suction and the establishment of its variation with the water content, which is commonly known as the soil-water characteristic curve (SWCC). Several methodologies have been developed for measuring either total suction ψ (sum of matric suction ψm and osmotic suction ψo) or ψm. While employing different methodologies for suction measurement, there is a possibility that various factors (viz., type of the soil, measurement methodology, range of the suction measurement, equilibration time, and presence of salts or contaminants in the soil) may influence the results and hence the SWCC. Therefore, it is essential to investigate the uniqueness of SWCC, determined by using some commonly adopted suction measurement methodologies. This study indicates that the SWCC established by adopting different methodologies may not be unique and is primarily influenced by the range of suction measurement. As such, it is essential to highlight the range of suction values involved for establishing the SWCC, to facilitate unambiguous modeling and to precisely understand the behavior of unsaturated soil.  相似文献   

6.
This paper presents a methodology to investigate the collapse behavior of unsaturated soils using suction-monitored oedometer tests. By incorporating independent suction measurement, the oedometer apparatus is capable of following the same stress paths as in double oedometer tests, while continuously monitoring the suction. The proposed method has been used to investigate the collapse behavior of a compacted silty clay and to confirm the uniqueness of the loading-collapse surface as identified from loading and wetting paths. A new mathematical form of the yield surface within an elastoplastic framework is proposed on the basis of test results over a wide range of suctions (0 to 30,000?kPa) and net stresses (up to 7,000?kPa). The fundamental assumptions of the newer type of elastoplastic framework, which incorporate the degree of saturation within their stress variables, are evaluated, and the limitations of such models are identified. The collapse behavior of samples with different fabrics induced by differing compaction characteristics is also investigated within an elastoplastic framework. The difference in fabric, which is observed through a petrological microscope, can be presented in a quantitative way with different model parameters.  相似文献   

7.
A series of unsaturated soil triaxial tests were performed on four soils including sand, silt, and a low plasticity clay. Attempts were made to correlate unsaturated soil properties from these tests and data from the literature with soil-water characteristics curve (SWCC), soil gradation, and saturated soil properties. The feasibility of estimating unsaturated soil property functions from saturated soil properties, SWCCs and gradation data, is demonstrated. A hyperbolic model for estimation of the unsaturated soil parameter, ?b, versus matric suction is presented. Shear induced volume change behavior was also studied, and results are included in this paper. Although not correlated with soil index properties, these shear-induced volume change data are important to complete stress-deformation analyses, and represent a significant addition to the existing data base of unsaturated soil properties.  相似文献   

8.
Weathered soils are used extensively as fill materials in slope construction in tropical and subtropical cities such as Hong Kong. The mechanical behavior of loose decomposed fill materials, particularly in the unsaturated state, has not often been investigated and is not yet fully understood. The objective of this study was to understand the mechanical behavior of loose unsaturated decomposed granitic soil and to study the effects of the stress state, the stress path and the soil suction on the stress–strain relationship, shear strength, volume change, and dilatancy via three series of stress path triaxial tests on both saturated and unsaturated specimens. It was found that loose and saturated decomposed granitic soil behaves like clean sands during undrained shearing. Strain-softening behavior is observed in loose saturated specimens. In unsaturated specimens sheared at a constant water content, a hardening stress–strain relationship and volumetric contractions are observed in the considered range of net mean stresses. The suction of the soil contributed little to the apparent cohesion. The angle of friction appeared to be independent of the suction. In unsaturated specimens subjected to continuous wetting (suction reduction) at a constant deviator stress, the volumetric behavior changed from dilative to contractive with increasing net mean stress and the specimen failed at a degree of saturation far below full saturation. It was revealed that the dilatancy of the unsaturated soil depends on the suction, the state, and the stress path.  相似文献   

9.
To evaluate roller-integrated machine drive power (MDP) technology for predicting the compaction parameters of cohesive soils considering the influences of soil type, moisture content, and lift thickness on machine power response, a field study was conducted with 15-m test strips using three cohesive soils and several nominal moisture contents. Test strips were compacted using a prototype CP-533 static padfoot roller with integrated MDP technology and tested using various in situ compaction measurement devices. To characterize the roller machine-soil interaction, soil testing focused on measuring compaction parameters for the compaction layer. Variation in both MDP and in situ measurements was observed and attributed to inherent variability of the compaction layer and measurement errors. Considering the controlled operations to create relatively uniform conditions of the test strips, measurement variability observed in this study establishes a baseline for acceptable variation in production operations using MDP technology in cohesive soils. Predictions of in situ compaction measurements from MDP were found to be highly correlated when moisture content and MDP-moisture interaction terms were incorporated into regression models.  相似文献   

10.
The soil–water characteristic curve (SWCC) of fine-grained soils is usually determined experimentally. In the design of mine waste covers and landfill liners, the unsaturated hydraulic conductivity function, k(h), is often derived theoretically from the measured SWCC. Implicit in these derivations is the transformation of the SWCC to a pore-size distribution (PSD), typically assumed to be constant and monomodal. However, PSD measurements of a clayey till compacted at various water contents after compaction, after flexible-wall permeability testing and before and after SWCC tests show that the PSD of the same material varies significantly under the stated physical conditions. Predictions of the SWCCs using PSDs measured both before and after the SWCC tests significantly underpredicted the values measured. By applying a simple transformation to the PSD to account for the scaling effect from the porosimetry samples (approximately 1 g dry weight) to the SWCC test samples (approximately 200 g dry weight), the predicted SWCCs were found to envelop the measured values. A simple model that simulates the change in PSD during the SWCC test predicted water contents close (1% root mean square error) to the measured SWCCs.  相似文献   

11.
Is Matric Suction a Stress Variable?   总被引:1,自引:0,他引:1  
The writer attempts to clarify and address two fundamental questions regarding the appropriate use of matric suction in unsaturated soil mechanics: Is matric suction a stress variable? and Is matric suction a stress state variable? These questions are examined by employing the universally accepted mechanical equilibrium principle, the concept of representative elementary volume (REV) for air-water-solid multiphase porous media, and physical and logical reasoning. It is clarified that matric suction is not a stress variable at a typical air-water-solid REV level, and it can be considered as a stress state variable. However, when it is considered as a stress state variable, there is an interdependency or coupling between matric suction and the net normal stress if both of them are concurrently used to describe the state of stress in unsaturated soils. It is illustrated that the answers to these questions bear important implications for the conceptualization, theorization, and application of unsaturated soil mechanics.  相似文献   

12.
This paper presents the results of a laboratory investigation whose purpose was to evaluate the effects of compaction on the erodibility of cohesionless soils. By means of a recently developed flume experiment, sediment erosion rates and incipient motion, as a function of shear stress, average velocity, and dry density, have been determined for three compacted sand and gravel mixtures. A preliminary comparison of the incipient motion values shows that granular soils compacted at the Proctor optimum have a higher resistance to free surface flow erosion than those compacted at lower and higher densities. This leads one to infer that the Proctor optimum, generally used as a standard for construction, might also be an optimum for hydraulic resistance and stability. Additional comparison of the experimental data with two commonly used incipient motion criteria also suggests that Yang’s criterion is a better predictor of soil detachment than the Shields-Yalin criterion.  相似文献   

13.
Causative Mechanisms of Rainfall-Induced Fill Slope Failures   总被引:3,自引:0,他引:3  
Slope failures in fill slopes formed by loosely compacted, completely decomposed granite in Hong Kong occur commonly during intense tropical rainstorms. The stress path greatly influences the shear strength of the soil mass, and is therefore crucial to the identification of slope-failure mechanisms. The soil mass in this case is largely unsaturated. In situ hydrologic response to rainstorms indicates that soil suction is reduced by rainfall infiltration, which often becomes the triggering factor in initiating slope instability. The constant dead-load tests on unsaturated, loosely compacted, completely decomposed granite appropriately simulate the field stress path of rainfall-induced fill-slope failure by reducing suction. The tests indicate that matric suction contributes to the dilative or contractive behavior of the unsaturated soils. The anisotropically consolidated undrained triaxial tests demonstrate the consistently contractive behavior of the specimens. On this basis, we delineate the in situ stress conditions leading to the initiation of rainfall-induced fill-slope failure, and the stress paths of the transformation from local failures to flowage. Based on a systematic study of fill-slope case records in Hong Kong, implications of such mechanisms on fill-slope stability are given.  相似文献   

14.
Conventionally, the resilient modulus test is conducted in the laboratory under different moisture content in which matric suction is unknown during the test. To investigate the influence of the matric suction on the resilient modulus, this study integrated the suction-controlled testing system and developed a modified testing procedure for the resilient modulus test of unsaturated subgrade soils. Based on the axis-translation technique, two cohesive soils were tested to investigate the effect of matric suction on resilient modulus. In the modified testing procedure, in order to fulfill the equilibrium in matric suction, the number of load cycles at each loading sequence of the resilient modulus test (AASHTO T 292-91) needs to be increased significantly. Experimental data indicate that matric suctions measured in the specimen after consolidation and resilient modulus tests are consistent with the matric suctions deduced from the soil-water characteristic curve corresponding to the same moisture content. In general, the resilient modulus obtained by the suction-controlled resilient modulus test appears to be reasonable. The trends of resilient modulus obtained by the suction-controlled resilient modulus test are consistent with those obtained by the conventional resilient modulus test. However, the suction-controlled resilient modulus test provides better insights that can help in interpreting the test results.  相似文献   

15.
Shear strength parameters used in geotechnical design are obtained mainly from the consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However in many field situations, soils are compacted for construction purposes and may not follow the stress paths in CD or CU triaxial tests. In these cases, the excess pore-air pressure during compaction will dissipate instantaneously, but the excess pore-water pressure will dissipate with time. Under this condition, it can be considered that the air phase is drained and the water phase is undrained. This condition can be simulated in a constant water content (CW) triaxial test. The purpose of this paper is to present the characteristics of the shear strength, volume change, and pore-water pressure of a compacted silt during shearing under the constant water content condition. A series of CW triaxial tests was carried out on statically compacted silt specimens. The experimental results showed that initial matric suction and net confining stress play an important role in affecting the characteristics of the shear strength, pore-water pressure, and volume change of a compacted soil during shearing under the constant water content condition. The failure envelope of the compacted silt exhibited nonlinearity with respect to matric suction.  相似文献   

16.
Probabilistic Analysis of Soil-Water Characteristic Curves   总被引:1,自引:0,他引:1  
Direct measurement of the soil-water characteristic curve (SWCC) is costly and time consuming. A first-order estimate from statistical generalization of experimental data belonging to soils with similar textural and structural properties is useful. A simple approach is to fit the data with a nonlinear function and to construct an appropriate probability model of the curve-fitting parameters. This approach is illustrated using sandy clay loam, loam, loamy sand, clay, and silty clay data in Unsaturated Soil Database. This paper demonstrates that a lognormal random vector is suitable to model the curve-fitting parameters of the SWCC. Other probability models using normal, gamma, Johnson, and other distributions do not provide better fit than the proposed lognormal model. The engineering impact of adopting a probabilistic SWCC is briefly discussed by studying the uncertainty of unsaturated shear strength due to the uncertainty of SWCC.  相似文献   

17.
In 1959 Bishop stated his effective stress equation for unsaturated soils. However, the difficulties in estimating the value of its main parameter χ, made this equation useless and it was abandoned for some time. Only recently, it has been recognized that the use of Bishop’s stress equation can lead to simpler and more realistic constitutive models for unsaturated soils. However, up to now the most successful equations to quantify the value of parameter χ are empirical and not satisfactory for most soils. Based on the analysis of the equilibrium of the solid particles of a soil showing a bimodal structure and subject to certain suction, it was possible to establish an analytical expression for Bishop’s parameter χ. The resulting stress has been called equivalent stress (in contrast with effective stress) and can be used to predict the shear strength of unsaturated soils. The equivalent stress is written as a function of the net stress and suction and requires two parameters: the saturated fraction and the degree of saturation of the unsaturated fraction of the soil. This equivalent stress clarifies some features of the strength of unsaturated soils that up to now had no apparent explanation. However, the determination of its two parameters cannot be made from current experimental procedures. A method for the determination of these parameters and a comparison between experimental and theoretical results for the shear strength of unsaturated soils are presented in a companion paper.  相似文献   

18.
In this paper, the stress-strain relationship and volumetric behavior of a loosely compacted unsaturated decomposed volcanic soil (fill) were studied by conducting three series of triaxial stress path tests: (1) consolidated undrained on the saturated fill; (2) constant water content; and (3) a reducing suction under constant deviator stress on the unsaturated fill. The last two series of tests were designed to simulate the effects of undrained response and rainfall infiltration in initially unsaturated slopes, respectively. It was found that the saturated loose volcanic soil behaves like clay under isotropic compression but it resembles sand behavior when it was subjected to undrained shear. For isotropically consolidated unsaturated specimens sheared under a constant water content, a hardening stress-strain and a nonlinear shear strength-suction relationship are observed. At relatively high suctions, both angle of friction and apparent cohesion appear to be independent of suction. Volumetric contraction during shear is observed in this series of tests. On the other hand, anisotropically consolidated loose unsaturated specimens subjected to a reducing suction change from contractive to dilative behavior as the net mean stress increases. This observed volumetric behavior, unlike the shear strength, is stress path-dependent and cannot be explained by using the existing elastoplastic critical state theoretical framework extended for unsaturated soils.  相似文献   

19.
An experimental study was conducted to measure small-strain shear moduli of chemically treated sulfate-bearing expansive soils using the bender element test. The bender element test was chosen because it provides reliable and repeatable small strain shear modulus measurements and allows for the periodical monitoring of stiffness property responses of soil specimens under varying curing conditions. Bender element tests were conducted on cement and lime treated soils and the results were then analyzed to study the variations in stiffness properties of soil specimens at different sulfate levels and curing conditions. Both cement and lime treated natural and artificial clays with low sulfate level of 1,000?ppm showed considerable enhancements in small strain shear moduli, whereas the same treated soils at high sulfate level of 10,000?ppm showed less enhancements in shear moduli due to sulfate heaving. Also, enhancements in shear moduli were lower for soil specimens continuously soaked under water compared to those cured in the humidity room. Rates of stiffness enhancements due to stabilizer type, compaction moisture content, type of curing, and sulfate levels are quantified and summarized.  相似文献   

20.
The paper reports laboratory investigations carried out on a tropical soil profile to study its compressibility, strength, critical state and limit state conditions, and their variation with depth. The soil profile comprises a reddish lateritic layer (horizon B) underlain by a saprolitic soil (horizon C) from which a number of block samples were taken. A series of isotropic and anisotropic compression tests, and drained and undrained triaxial tests, were conducted on specimens sampled at depths between 1.0 and 7.0 m, and also in the exposed saprolitic soil. Special triaxial tests, with the pore pressure increased to induce failure, were performed to investigate the failure at low stress levels. On this basis a tensile cutoff on the failure envelope was defined. In order to assess the influence of the natural soil structure, drained and undrained triaxial tests were carried out on compacted samples obtained from depths of 1.0 and 5.0 m. Higher strength parameters were measured for the horizon C soil, which is consistent with its lower clay content. A nonlinearity in the critical state line in q:p′ stress space was identified, but linear regression was used to obtain critical state parameters. The limit state curves for soils from horizon B are centered on the hydrostatic axis, but limit state curves for horizon C suggested anisotropic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号