首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work deals with the plasma‐induced coating process on the surface of PBO fibers to obtain a strong interfacial adhesion between the poly(p‐phenylene benzobisoxazole) (PBO) fibers and the poly(phthalazinone ether sulfone ketone) (PPESK) matrices. The process consisted of four steps: (a) plasma preactivation of PBO fibers; (b) immersion in an epoxy resin solution; (c) drying and then soaking with the PPESK solution; (d) shaped by compression molding technique. The orthogonal experiments used in this study enable the determination of the significant experimental parameters that influence efficiency of the process by comparing the values of ILSS. The order of their influences was the concentration > power > treating time > treating pressure. The results of the interlaminar shear strength (ILSS) and water absorption showed that the ILSS of the composite increased by 56.5% after coating, meanwhile the water absorption declined to 0.32%. The changes of the surface chemical composition, the surface morphology, and the surface free energy of fibers were studied by FTIR spectroscopy, atomic force microscope (AFM), and dynamic contact angle analysis (DCAA), respectively. Fracture mechanism of the composite was examined by scanning electron microscope (SEM). The results indicated that plasma‐induced coating process was an efficient method to enhance the interfacial adhesion of PBO fibers and PPESK matrices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
We introduce in this article oxygen plasma treatment as a convenient and effective method for the surface modification of Armos fibers. The effects of oxygen‐plasma‐treatment power on both the Armos fiber surface properties and Armos‐fiber‐reinforced poly(phthalazinone ether sulfone ketone) composite interfacial adhesion were investigated. The Armos fiber surface chemical composition, surface morphology and roughness, and surface wettability as a function of oxygen‐plasma‐treatment power were measured by X‐ray photoelectron spectroscopy, scanning electronic microscopy, atomic force microscopy, and dynamic contact angle analysis. The results show that oxygen plasma treatment introduced a lot of reactive functional groups onto the fiber surface, changed the surface morphology, increased the surface roughness, and enhanced the surface wettability. Additionally, the effect of the oxygen‐plasma‐treatment power on the composite interfacial adhesion was measured by interlaminar shear strength with a short‐beam bending test. Oxygen plasma treatment was an effective method for improving the composite interfacial properties by both chemical bonding and physical effects. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Interfacial adhesion between fiber and matrix has a strong influence on composite mechanical performance. To exploit the reinforcement potential of the fibers in advance composite, it is necessary to reach a deeper understanding on the relation between fiber surface treatment and interfacial adhesion. In this study, air plasma was applied to modify carbon fiber (CF) surface, and the capability of plasma grafting for improving the interfacial adhesion in CF/thermoplastic composite was discussed and also the mechanism for composite interfacial adhesion was analyzed. Results indicated that air plasma treatment was capable of increasing surface roughness as well as introducing surface polar groups onto CF; both chemical bonding and mechanical interaction were efficient in enhancements of interlaminate shear strength of CF/PPESK composite, while mechanical interaction has a dominant effect on composite interfacial adhesion than chemical bonding interaction. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
This article presents the results of a study of the processing and physicomechanical properties of environmentally friendly wood‐fiber‐reinforced poly(lactic acid) composites that were produced with a microcompounding molding system. Wood‐fiber‐reinforced polypropylene composites were also processed under similar conditions and were compared to wood‐fiber‐reinforced poly(lactic acid) composites. The mechanical, thermomechanical, and morphological properties of these composites were studied. In terms of the mechanical properties, the wood‐fiber‐reinforced poly(lactic acid) composites were comparable to conventional polypropylene‐based thermoplastic composites. The mechanical properties of the wood‐fiber‐reinforced poly(lactic acid) composites were significantly higher than those of the virgin resin. The flexural modulus (8.9 GPa) of the wood‐fiber‐reinforced poly(lactic acid) composite (30 wt % fiber) was comparable to that of traditional (i.e., wood‐fiber‐reinforced polypropylene) composites (3.4 GPa). The incorporation of the wood fibers into poly(lactic acid) resulted in a considerable increase in the storage modulus (stiffness) of the resin. The addition of the maleated polypropylene coupling agent improved the mechanical properties of the composites. Microstructure studies using scanning electron microscopy indicated significant interfacial bonding between the matrix and the wood fibers. The specific performance evidenced by the wood‐fiber‐reinforced poly(lactic acid) composites may hint at potential applications in, for example, the automotive and packaging industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4856–4869, 2006  相似文献   

5.
Plasma‐copolymerized functional coatings of acrylic acid and 1,7‐octadiene were deposited onto high strength, high modulus, poly‐p‐phenylene benzobisoxazole (PBO) fibers. X‐ray photoelectron spectroscopy (XPS) with trifluoroethanol derivatization confirmed that the PBO fibers were covered completely with the plasma copolymer and that the coating contained a quantitative concentration of carboxylic acid groups. Microdebond single filament adhesion and interlaminar shear strength (ILSS) tests were used to evaluate the interfacial strength of epoxy resin composites containing these functionalized PBO fibers. Both the interfacial shear strength (IFSS) obtained from single filament tests, and the ILSS of high volume fraction composites were a function of the surface functionality of the fibers so that there was a good correlation between ILSS and IFSS data. The tensile strengths of single fibers with or without coating were comparable, demonstrating that the fiber surface was not damaged in the plasma‐coating procedure. Indeed, the statistical analysis showed that Weibull modulus was increased. Therefore, plasma‐polymerized coatings can be used to control the interfacial bond between PBO fibers and matrix resins and act as a protective size for preserving the mechanical properties of the fibers. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

6.
Poly(p‐phenylene benzobisoxazole) (PBO) fiber with a smooth surface exhibits limited interfacial interaction with resin matrix. One of the effective strategies to improve the adhesion between the fiber and resin matrix is through surface modification of the fiber. In this study, we have proposed a novel surface treatment agent based on phosphoester cross‐linked castor oil (PCCO) for effective surface treatment of PBO fibers. The surface treatment agent was prepared by a simple cross‐linking reaction between hydroxy phosphorylated castor oil (PCO) and epoxy resin, with alcohol as the solvent at 65°C. Once the PBO fiber was treated with this agent, the interfacial adhesion between the PBO fiber and the epoxy resin could then be improved. Systematic analyses suggest that the surface treatment with (PCO + epoxy)/alcohol solution improves the interaction of the PBO fiber with the epoxy resin matrix. The PCCO coated onto the surface of PBO fiber acts as a coupling agent, improving the interfacial shear strength (IFSS) of the PBO fiber/epoxy resin composite. Results indicate a 156% increase in IFSS without compromising the mechanical properties of the fiber. POLYM. COMPOS., 37:1198–1205, 2016. © 2014 Society of Plastics Engineers  相似文献   

7.
This article aims to improve interfacial properties of carbon fiber‐reinforced poly(phthalazinone ether ketone) (PPEK) composites by means of preparing carbon nanotube (CNT)/carbon fiber hybrid fiber. XPS was used to characterize the chemical structure of unsized carbon fiber and SEM was used to observe the surface topography of carbon fibers. Specific area measurement, dynamic contact angle, and interfacial shear strength (IFSS) testing were performed to examine the effect of CNT on the interfacial properties of carbon fiber/PPEK composites. By the introduction of CNT to the interphase of carbon fiber‐reinforced PPEK composites, an enhancement of IFSS by 55.52% was achieved. Meanwhile, the interfacial fracture topography was also observed and the reinforcing mechanism was discussed. POLYM. COMPOS., 36:26–33, 2015. © 2014 Society of Plastics Engineers  相似文献   

8.
A series of dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO) were prepared by introducing binary hydroxyl polar groups into poly(p-phenylene benzoxazole) PBO macromolecular chains and the effects of hydroxyl polar groups on surface wettability, interfacial adhesion and axial compression property of PBO fiber were investigated. Contact angle measurement showed that the wetting process both for water and for ethanol on DHPBO fibers were obviously shorter than that on PBO fibers, implying DHPBO fibers have a higher surface free energy. Meanwhile, single fiber pull-out test showed that DHPBO fibers had higher interfacial shear strength than that of PBO fibers. Scanning electron microscope proved that there was more resin remained on the surface of DHPBO fibers than on PBO fibers after pull-out test. Furthermore, axial compression bending test showed that the introduction of binary hydroxyl groups into macromolecular chains apparently improved the equivalent bending modulus of DHPBO fibers.  相似文献   

9.
As a kind of rig‐rod‐like polymer, poly(p‐phenylene benzobisoxazole) (PBO) has received great interest because of its excellent mechanical properties and good thermal stability. The use of PBO fibers, however, is limited due to its low sunlight stability. In this work, the photoaging of PBO fibers, as well as the effects of oxygen and moisture on their photoaging, is investigated by tensile strength measurements, infrared spectroscopy, molecular mass determination, and scanning electron microscopy. It is first time to find that the photoaging of PBO fibers includes two development stages. The physical aging is the dominate factor at the first stage of photoaging relative to the second stage, in which the chemical aging is the dominate factor. In the first degradation stage, long defects appear and develop parallel to the fiber axis. Little chemical change occurs in this stage. In the second degradation stage, the molecular mass of PBO decreases and chemical degradation occurs. Oxygen accelerates the occurrence of chemical degradation. It is also found PBO fibers are more stable for photoaging when moisture and oxygen are isolated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Biodegradable composites of poly(butylene succinate‐co‐butylene adipate) (PBSA) reinforced by poly(lactic acid) (PLA) fibers were developed by hot compression and characterized by Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analyzer, and tensile testing. The results show that PBSA and PLA are immiscible, but their interface can be improved by processing conditions. In particular, their interface and the resulting mechanical properties strongly depend on processing temperature. When the temperature is below 120 °C, the bound between PBSA and PLA fiber is weak, which results in lower tensile modulus and strength. When the processing temperature is higher (greater than 160 °C), the relaxation of polymer chain destroyed the molecular orientation microstructure of the PLA fiber, which results in weakening mechanical properties of the fiber then weakening reinforcement function. Both tensile modulus and strength of the composites increased significantly, in particular for the materials reinforced by long fiber. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43530.  相似文献   

11.
The methods of argon plasma and argon plasma combined with coupling agents were employed to modify the poly[1,4‐phenylene‐cis‐benzobisoxazole] (PBO) fiber surface. The interfacial shearing strength (IFSS) of PBO fibers/epoxy resin was measured by the single fiber pull‐out test. The surface chemical structure and surface composition of PBO fibers were determined by FTIR and X‐ray photoelectron spectroscopy respectively. The morphology of the fiber surface was investigated by scanning electron microscopy and the specific surface area of the fibers was calculated by B.E.T. equation. Furthermore, the wettability of PBO fibers was confirmed by the droplet profile analysis method. The results showed that the elemental composition ratio of the fiber surface changed after the modification. The IFSS increased by 42 and 78% when the fibers were treated by argon plasma and argon plasma combined with the coupling agents, respectively. Meanwhile, the specific surface areas of the treated fibers were improved. In addition, compared with the modification of argon plasma, the modification of argon plasma combined with the coupling agents inhibited the attenuation phenomena of the IFSS and the wettability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1428–1435, 2006  相似文献   

12.
Poly(p‐phenylene benzobisoxazole) (PBO) fibers were activated by the horseradish peroxidases (HRP) and then treated by 3‐Glycidoxypropyltrimethoxysilane (KH‐560) to improve the wettability and the interfacial adhesion between PBO fibers and cyanate ester matrix. The chemical compositions of PBO fibers were characterized and analyzed by FTIR and XPS. Surface morphologies of PBO fibers were examined by SEM. The wettability of PBO fibers was evaluated by the dynamic contact angle analysis test. The mechanical properties were evaluated by tensile strength and interfacial shear strength, respectively. The results demonstrated that hydroxyl groups and epoxy groups were introduced onto the surface of PBO fibers during the treatments. These treatments can effectively improve the wettability and adhesion of PBO fibers. The surface free energy of PBO fibers was increased from 31.1 mN/m to 55.2 mN/m, and the interfacial adhesion between PBO fiber and cyanate ester resin was improved to 10.77 MPa. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40204.  相似文献   

13.
Automotive friction materials reinforced by home‐made poly (p‐phenylene benzobisoxazole) (PBO) pulp (fibrillated organic fibers) were prepared through compression molding. The friction and wear behaviors of the obtained composite materials were evaluated using a constant rotating speed type friction tester. The PBO pulp content and the testing loads showed clear influence on the tribological properties of the composites. Friction stability, wear rate, and morphology of sliding surfaces were carefully examined to investigate the effect of the pulp ingredient in the friction materials. Scanning electron microscopy was employed to study the morphology of the surface and wear particles. The significant wear reduction was achieved when the mass fraction of PBO pulp was 3%. Wear rates of the composites with 3% PBO pulp were measured over a load range from 0.3 to 1 MPa at different temperatures. The results pointed to two facts: (1) the wear rate of the friction material increased linearly with load at low temperature (below 200°C); (2) wear status varied with the testing loads at high temperature (above 250°C). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4032–4039, 2013  相似文献   

14.
This paper aims to evaluate the potential of totally bioresorbable composites as cardiovascular stent material. Copolymers were synthesized by ring‐opening polymerization of L ‐lactide (LLA) and 1,3‐trimethylene carbonate (TMC) with LLA‐TMC ratios of 3/1, 4/1, and 5/1 and characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). Wt. 5% of poly(L ‐lactide)‐co‐(glycolide) (PLGA) fibers are used to reinforce PTMC‐LLA copolymer matrices to prepare totally bioresorbable composites. Heat treatment under vacuum and oxygen plasma treatment are applied to improve the mechanical performance of the composites in terms of eliminating the imperfections inside, enhancing interfacial affinity, surface roughness, and enriching surface oxidative chemical bonds. After plasma treatment, the viscosity and tensile strength of the fibers decrease, but the surface chemical bonds are enriched and surface roughness is increased. The composites with 15‐min plasma‐treated fibers and 2 h heat treatment exhibit the highest tensile strength of 46 MPa, i.e., very close to that of PLLA (48 MPa), which is usually used as biodegradable stent material. Moreover, the tensile modulus of the above composite is 1711 MPa, which is only 34% of PLLA's modulus (4985 MPa). Therefore, novel composites with sufficient tensile strength and better flexibility are obtained as promising cardiovascular stent material. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

15.
In this paper, the catalytic grafting technique for preparation of polymer/fiber composites is extended to plasma treated ultra-high modulus polyethylene (UHMPE) fiber/high density polyethylene (HDPE) system. The OH groups introduced on the UHMPE fiber surface by oxygen plasma treatment were used to chemically anchor Ziegler-Natta catalyst which then was followed by ethylene polymerization on the fiber surface. The morphology and interfacial behavior, as well as the mechanical properties, of the HDPE composites reinforced by catalytic grafted or ungrafted UHMPE fibers were investigated by SEM, DSC, polarized light optical microscopy, and tensile testing. The experimental results show that the polyethylene grafted on the fibers acted as a transition layer between the reinforcing UHMPE fibers and a commercial HDPE matrix. The interfacial adhesion was also significantly improved. Compared with the composite reinforced by ungrafted UHMPE fibers, the composite reinforced by catalytic grafted UHMPE fibers exhibits much better mechanical properties.  相似文献   

16.
Two kinds of modified poly(p‐phenylene benzoxazole) (PBO), the copolymer of TPA (SPBO) and p‐SPBO, containing ionic groups in the macromolecular chains were obtained by copolymerization from 1,3‐diamino‐4,6‐dihydroxybenzene dihydrochloride (DAR) and terephthalic acid (TPA), with the addition of selected amounts (1.5–5.0% molar ratio over DAR) of 5‐sulfoisophthalic acid monosodium salt or sulfoterephthalic acid monopotassium salt in place of the TPA, respectively, in poly(phosphoric acid) (PPA). The resultant PBO/PPA, SPBO/PPA, and p‐SPBO/PPA lyotropic liquid‐crystalline solutions were spun into fibers by a dry‐jet wet‐spinning technique. Chemically modified PBO fibers with sulfonate salt pendants in the polymer chains were obtained for the first time. The surface wetting behavior and interfacial shear strength between the fiber and epoxy resin were investigated. The interference of sulfonate salt pendants on the crystalline morphology was measured. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

17.
Two organofunctional silanes and a copolymer were used to increase the interfacial adhesion in glass fiber polypropylene (PP) reinforced composites. The performance of the coupling agents was investigated by means of mechanical property measurements, scanning electron microscopy (SEM), and dynamic mechanical analysis. The increased adhesion between the glass fibers and PP matrix observed with SEM resulted in an improvement of the mechanical and dynamic mechanical properties of the composites. Coupling achieved with the copolymer poly(propylene‐g‐maleic anhydride) (PP‐g‐MA) proved to be the most successful compared with 3‐aminopropyltrimethoxysilane and 3‐aminopropyltriethoxysilane. The combination of PP‐g‐MA with the silanes resulted in further property improvements because of the ability of the MA groups to react with the amino groups of the silanes. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 701–709, 2001  相似文献   

18.
A composite of short‐fiber, poly(m‐phenylene isophthalamide), and thermoplastic elastomer styrene (ethylene–butylene) styrene (SEBS), was investigated. The fiber surface was modified by N‐alkylation (heptylation and dodecylation) to improve their compatibility with a less polar SEBS matrix. Observation of fiber‐surface morphology by SEM revealed surface roughness after N‐alkylation. Nearly complete coating of the polymer matrix on the fiber was observed on a fractured surface of the composite, which is evidence for the improvement of fiber–matrix adhesion. It was found that the modulus of the composites grew with increasing fiber loading to approximately the same extent for both unmodified and modified fiber composites. Tensile strength of the modified fiber composites was found to improve significantly over that of the unmodified fiber composite. This suggests that the presence of the alkyl group on the fiber surface is responsible for an improvement of interfacial adhesion. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2414–2422, 1999  相似文献   

19.
Changes in the surface wettability of poly(p-phenylene benzobisoxazole) (PBO) fibers were investigated by thermogravimetric analysis (TGA) following an air dielectric barrier discharge (DBD) plasma treatment. The results were then supplemented and confirmed by scanning electron microscopy (SEM), dynamic contact angle analysis (DCAA), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements. After exposure to the DBD plasma at a pre-determined power level, TGA analysis showed that the residual rates retained by the PBO composites decreased, which meant an increase in the amount of resin coating the PBO fibers in the composites. Observations by SEM confirmed that there was more resin adhering to the treated PBO fibers and the wetting behavior of resin on the fibers was greatly improved. Meanwhile, DCAA for the treated fibers showed a significant enhancement in fiber surface free energy. XPS and AFM were performed in order to reveal any variations in fiber surface activity and surface morphology resulting from the surface treatment. The resulting data showed that increases in oxygen-containing polar groups and surface roughness on the plasma-treated PBO fibers contributed to the above improved wetting behavior. With comprehensive analyses, it was concluded that TGA could be used as a supporting method assessing the surface wettability of PBO fibers before and after air DBD plasma treatment.  相似文献   

20.
Composites of poly(3‐hydroxybutyrate)‐co‐poly(3‐hydroxyvalerate) (PHBHV) with 6% of 3‐hydroxyvalerate (HV) and natural rubber (NR) were prepared by a solvent‐casting method. Different approaches were tested for the composite preparation. Both PHBHV and NR were dissolved in chloroform, followed by its evaporation, giving various layers. The mechanical properties and morphology of the obtained composites were evaluated by tensile tests and scanning electron microscopy (SEM), respectively. The obtained results demonstrated that the final composite has excellent mechanical properties when compared with PHBHV. SEM analysis unequivocally showed the excellent adhesion between the two polymeric layers. This new material was also tested as a drug delivering system using flurbiprofen as a model drug, and then the diffusion coefficients were determined. This article describes an easy method to produce a desirable composite from PHBHV and NR. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号