首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
High‐water‐content hydrogels that are both mechanically robust and conductive could have wide applications in fields ranging from bioengineering and electronic devices to medicine; however, creating such materials has proven to be extremely challenging. This study presents a scalable methodology to prepare superelastic, cellular‐structured nanofibrous hydrogels (NFHs) by combining alginate and flexible SiO2 nanofibers. This approach causes naturally abundant and sustainable alginate to assemble into 3D elastic bulk NFHs with tunable water content and desirable shapes on a large scale. The resultant NFHs exhibit the integrated properties of ultrahigh water content (99.8 wt%), complete recovery from 80% strain, zero Poisson's ratio, shape‐memory behavior, injectability, and elastic‐responsive conductivity, which can detect dynamic pressure in a wide range (>50 Pa) with robust sensitivity (0.24 kPa?1) and durability (100 cycles). The fabrication of such fascinating materials may provide new insights into the design and development of multifunctional hydrogels for various applications.  相似文献   

3.
4.
5.
This paper reports solution‐processed, high‐efficiency polymer light‐emitting diodes fabricated by a new type of roll‐to‐roll coating method under ambient air conditions. A noble roll‐to‐roll cohesive coating system utilizes only natural gravity and the surface tension of the solution to flow out from the capillary to the surface of the substrate. Because this mechanism uses a minimally cohesive solution, the roll‐to‐roll cohesive coating can effectively realize an ultra‐thin film thickness for the electron injection layer. In addition, the roll‐to‐roll cohesive coating enables the fabrication of a thicker polymer anode film more than 250 nm at one time by modification of the surface energy and without wasting the solution. It is observed that the standard sheet resistance deviation of the polymer anode is only 2.32 Ω/□ over 50 000 bending cycles. The standard sheet resistance deviation of the polymer anode in the different bending angles (0 to 180°) is 0.313 Ω/□, but the case of the ITO‐PET is 104.93 Ω/□. The average surface roughness of the polymer anode measured by atomic force microscopy is only 1.06 nm. Because the surface of the polymer anode has a better quality, the leakage current of the polymer light‐emitting diodes (PLEDs) using the polymer anode is much lower than that using the ITO‐PET substrate. The luminous power efficiency of the two devices is 4.13 lm/W for the polymer anode and 3.21 lm/W for the ITO‐PET. Consequently, the PLEDs made by using the polymer anode exhibited 28% enhanced performance because the polymer anode represents not only a higher transparency than the ITO‐PET in the wavelength of 560 nm but also greatly reduced roughness. The optimized the maximum current efficiency and power efficiency of the device show around 6.1 cd/A and 5.1 lm/W, respectively, which is comparable to the case of using the ITO‐glass.  相似文献   

6.
7.
8.
Coating inkjet‐printed traces of silver nanoparticle (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity by six‐orders of magnitude and significantly improves tolerance to tensile strain. This enhancement is achieved through a room‐temperature “sintering” process in which the liquid‐phase EGaIn alloy binds the AgNP particles (≈100 nm diameter) to form a continuous conductive trace. Ultrathin and hydrographically transferrable electronics are produced by printing traces with a composition of AgNP‐Ga‐In on a 5 µm‐thick temporary tattoo paper. The printed circuit is flexible enough to remain functional when deformed and can support strains above 80% with modest electromechanical coupling (gauge factor ≈1). These mechanically robust thin‐film circuits are well suited for transfer to highly curved and nondevelopable 3D surfaces as well as skin and other soft deformable substrates. In contrast to other stretchable tattoo‐like electronics, the low‐cost processing steps introduced here eliminate the need for cleanroom fabrication and instead requires only a commercial desktop printer. Most significantly, it enables functionalities like “electronic tattoos” and 3D hydrographic transfer that have not been previously reported with EGaIn or EGaIn‐based biphasic electronics.  相似文献   

9.
10.
11.
Quantum‐dot light‐emitting diodes (QLEDs) may combine superior properties of colloidal quantum dots (QDs) and advantages of solution‐based fabrication techniques to realize high‐performance, large‐area, and low‐cost electroluminescence devices. In the state‐of‐the‐art red QLED, an ultrathin insulating layer inserted between the QD layer and the oxide electron‐transporting layer (ETL) is crucial for both optimizing charge balance and preserving the QDs' emissive properties. However, this key insulating layer demands very accurate and precise control over thicknesses at sub‐10 nm level, causing substantial difficulties for industrial production. Here, it is reported that interfacial exciton quenching and charge balance can be independently controlled and optimized, leading to devices with efficiency and lifetime comparable to those of state‐of‐the‐art devices. Suppressing exciton quenching at the ETL–QD interface, which is identified as being obligatory for high‐performance devices, is achieved by adopting Zn0.9Mg0.1O nanocrystals, instead of ZnO nanocrystals, as ETLs. Optimizing charge balance is readily addressed by other device engineering approaches, such as controlling the oxide ETL/cathode interface and adjusting the thickness of the oxide ETL. These findings are extended to fabrication of high‐efficiency green QLEDs without ultrathin insulating layers. The work may rationalize the design and fabrication of high‐performance QLEDs without ultrathin insulating layers, representing a step forward to large‐scale production and commercialization.  相似文献   

12.
13.
Flexible and highly efficient energy storage units act as one of the key components in portable electronics. In this work, by planar‐integrated assembly of hierarchical ZnCo2O4 nanowire arrays/carbon fibers electrodes, a new class of flexible all‐solid‐state planar‐integrated fiber supercapacitors are designed and produced via a low‐cost and facile method. The as‐fabricated flexible devices exhibit high‐efficiency, enhanced capacity, long cycle life, and excellent electrical stability. An enhanced distributed‐capacitance effect is experimentally observed for the device. This strategy enables highly flexible new structured supercapacitors with maximum functionality and minimized size, thus making it possible to be readily applied in flexible/portable photoelectronic devices.  相似文献   

14.
15.
16.
The development of omnidirectionally stretchable pressure sensors with high performance without stretching‐induced interference has been hampered by many challenges. Herein, an omnidirectionally stretchable piezoresistive pressure‐sensing device is demonstrated by combining an omniaxially stretchable substrate with a 3D micropattern array and solution‐printing of electrode and piezoresistive materials. A unique substrate structural design and materials mean that devices that are highly sensitive are rendered, with a stable out‐of‐plane pressure response to both static (sensitivity of 0.5 kPa?1 and limit of detection of 28 Pa) and dynamic pressures and the minimized in‐plane stretching responsiveness (a small strain gauge factor of 0.17), achieved through efficient strain absorption of the electrode and sensing materials. The device can detect human‐body tremors, as well as measure the relative elastic properties of human skin. The omnidirectionally stretchable pressure sensor with a high pressure sensitivity and minimal stretch‐responsiveness yields great potential to skin‐attachable wearable electronics, human–machine interfaces, and soft robotics applications.  相似文献   

17.
A simple strategy for enabling conductive pressure sensitive adhesives (PSAs) to work as light‐responsive materials is reported. Direct laser‐writing of PSA substrates was achieved by means of a continuous‐wave He‐Ne laser focused through the objectives of an optical microscope. This approach takes advantage of cooperative interplay between viscoelastic properties of PSAs and enhanced thermal conductivity provided by an extra overlayer of gold. In particular, the thickness of the gold layer is a crucial parameter for tuning the substrate responsiveness. Self‐healing and self‐degradation processes can be exploited for controlling the lifetime of the written information, whereas additional protective coatings can be introduced to achieve permanent storage.  相似文献   

18.
19.
20.
Deterministic assembly of nanoparticles with programmable patterns is a core opportunity for property‐by‐design fabrication and large‐scale integration of functional materials and devices. The wet‐chemical‐synthesized colloidal nanocrystals are compatible with solution assembly techniques, thus possessing advantages of high efficiency, low cost, and large scale. However, conventional solution process suffers from tradeoffs between spatial precision and long‐range order of nanocrystal assembly arising from the uncontrollable dewetting dynamics and fluid flow. Here, a capillary‐bridge manipulation method is demonstrated for directing the dewetting of nanocrystal inks and deterministically patterning long‐range‐ordered superlattice structures. This is achieved by employing micropillars with programmable size, arrangement, and shape, which permits deterministic manipulation of geometry, position, and dewetting dynamics of capillary bridges. Various superlattice structures, including one‐dimensional (1D), circle, square, pentagon, hexagon, pentagram, cross arrays, are fabricated. Compared to the glassy thin films, long‐range‐ordered superlattice arrays exhibit improved ferroelectric polarization. Coassembly of nanocrystal superlattice and organic functional molecule is further demonstrated. Through introducing azobenzene into superlattice arrays, a switchable ferroelectric polarization is realized, which is triggered by order–disorder transition of nanocrystal stacking in reversible isomerization process of azobenzene. This method offers a platform for patterning nanocrystal superlattices and fabricating microdevices with functionalities for multiferroics, electronics, and photonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号