首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
IntroductionThe pyrimidine and its derivatives are knownto possess extraordinary biological properties thatare generally distinguished qualitatively by havingbeen used as pesticide,herbicide,bactericide,andmedicine intermediates[1] .A survey of these appli-cations and a number of the related variations thathave been developed recently,such as the extraor-dinary effective herbicide of sulfonyl sulfourea,re-veals that the biological properties are just becauseof the wide existence of pyrimidine …  相似文献   

2.
黄美华  刘平  王艰  陈云  刘政 《结构化学》2006,25(4):453-458
1 INTRODUCTION The polymeric metal complexes with extended structures are of great interest because of their useful chemical or physical properties[1]. Due to the noti- ceable fact that the aromatic polycarboxylate can provide versatile coordination mode and the non- coplanar structure of carboxylate groups and benze- ne rings, a lot of efforts in this field have been parti- cularly directed to the preparation of aromatic poly- carboxylate (such as phthalate, terephthalate and isophthalat…  相似文献   

3.
1 INTRODUCTION Palladium (Ⅱ) coordination and organometallic compounds usually show square planar environments at the metal center[1], and have experienced an im- portant development in the past years due to their acting as intermediates in different types of catalytic reactions and numerous applications in organic synthesis[2]. Although palladium plays an increase- ingly recognized role as a biometal[3], little is known about the structure and function of palladium compounds in living …  相似文献   

4.
李明  郭维斯  文丽荣  曲波 《结构化学》2006,25(1):108-112
1INTRODUCTION Pyrazolo[1,5-a]pyrimidine derivatives have shown various biological activities in the terms of antibac-terial,antischistosomal and xanthine oxidase inhibi-tors[1~5].The enaminones are highly reactive inter-mediates and have been extensively used as build-ing blocks in organic synthesis especially in the he-terocyclic compounds[6~8].In addition,a great deal of interest has been focused on the synthesis of py-razolo[1,5-a]pyrimidine through versatile enamino-nes because of thei…  相似文献   

5.
1 INTRODUCTION The complexes containing dithiolate ligands have played a well-established role in modern coordination chemistry[1]. There is continuous interest in complexes of chalcogenolate ligands with transition metals such as complexes of Pd[1], Mo[1], Au[2], Ir[3~6], Rh[4, 5], Co[7] and Re[1, 8] containing a chelating 1,2-dicarba-closo-dodecabarane-1,2-dich- alcogenolate ligand. Some of these complexes have become important in the study of new molecular materials[1, 9, 10]. Th…  相似文献   

6.
IntroductionSalicylaldoxime can be used in chemically modi-fied glassy-carbon electrodes,and applied to the deter-mination of metals in water.It shows a very high recov-ery[1,2].Direct design of solid-state structures that en-compass frameworks such as grids,ladders,helicesand channels of a desired architecture is central to crys-tal engineering science[3,4].Each of the oxidationstates of copper displays a different stereochemistry,ofwhich Cu(Ⅱ)is the most representative example foritsd9elec…  相似文献   

7.
1 INTRODUCTION Many efforts have been devoted to the synthesis of metal organophosphonates during the past three decades because of their rich variety of structural chemistry as well as their practical or potential applications in the areas of adsorption/desorption[1, 2], catalysts[3, 4], meso-/microporous materials[5~7] and intercalation chemistry[8~16]. One encouraging deve- lopment direction is the use of phosphonic acids with bi- and trifunctional groups, such as amino, hydroxyl and…  相似文献   

8.
1 INTRODUCTION Orotic acid (H3dtpc), an important pyrimidine derivative as the effective precursor in the biosynthesis of pyrimidine base of nucleic acids in living organisms, plays a unique role in bioinorganic and pharmaceutical. Aside from the biological interest, orotic acid is also interesting in coordination chemistry. Its ketonic and enolic tautomers along with asymmetric geometry make it to be a very good versatile polydentate ligand[1~5]. The incorporation of metals into supram…  相似文献   

9.
1 INTRODUCTION Palladium compounds have attracted much attention as a consequence of their application in homogeneous and heterogeneous catalyses[1]. For instance, palladium compounds are the most active catalysts for the carbonylation, such as palladium-catalyzed carbonylation of nitroarenes, aryl halides, alkyne and so on[2~4]. Some dramatic results in the homogeneous catalysis of the reactions of organic compounds, particularly the successful commercial exploitation of the Wacker on…  相似文献   

10.
冯云龙 《结构化学》2002,21(1):22-25
1 INTRODUCTION A number of isonitroso-b-diketones and isonitroso-b-ketoesters such as isonitrosoacetyl- acetone(Hiaa), isonitrosobenzoylacetone(Hiba) and isonitrosoethylacetoacetate (Hieaa) have been employed as reagents in spectrophotometric determination of iron, palladium and ruthenium[1]. Transition metal complexes of such ligands[2] are potential models for metal binding sites in ferroverdin[3]. They were found as dyes and light-absorbing agents for the acceleration of the sol…  相似文献   

11.
By interaction of MoX(3)(THF)(3) with [Cat]X in THF, the salts [Cat][MoX(4)(THF)(2)] have been synthesized [X = I, Cat = PPh(4), NBu(4), NPr(4), (Ph(3)P)(2)N; X = Br, Cat = NBu(4), PPh(4) (Ph(3)P)(2)N]. Mixed-halide species [MoX(3)Y(THF)(2)](-) (X, Y = Cl, Br, I) have also been generated in solution and investigated by (1)H-NMR. When the tetraiodo, tetrabromo, and mixed bromoiodo salts are dissolved in CH(2)Cl(2), clean loss of all coordinated THF is observed by (1)H-NMR. On the other hand, [MoCl(4)(THF)(2)](-) loses only 1.5 THF/Mo. The salts [Cat](3)[Mo(3)X(12)] (X = Br, I) have been isolated from [Cat][MoX(4)(THF)(2)] or by running the reaction between MoX(3)(THF)(3) and [Cat]X directly in CH(2)Cl(2). The crystal structure of [PPh(4)](3)[Mo(3)I(12)] exhibits a linear face-sharing trioctahedron for the trianion: triclinic, space group P&onemacr;; a = 11.385(2), b = 12.697(3), c = 16.849(2) ?; alpha = 76.65(2), beta = 71.967(12), gamma = 84.56(2) degrees; Z = 1; 431 parameters and 3957 data with I > 2sigma(I). The metal-metal distance is 3.258(2) ?. Structural and magnetic data are consistent with the presence of a metal-metal sigma bond order of (1)/(2) and with the remaining 7 electrons being located in 7 substantially nonbonding orbitals. The ground state of the molecule is predicted to be subject to a Jahn-Teller distortion, which is experimentally apparent from the nature of the thermal ellipsoid of the central Mo atom. The [Mo(3)X(12)](3)(-) ions reacts with phosphines (PMe(3), dppe) to form products of lower nuclearity by rupture of the bridging Mo-X bonds.  相似文献   

12.
Treatment of (trimpsi)V(CO)(2)(NO) (trimpsi = (t)BuSi(CH(2)PMe(2))(3)) with 1 equiv of PhICl(2) or C(2)Cl(6) or 2 equiv of AgCl affords (trimpsi)V(NO)Cl(2) (1) in moderate yields. Likewise, (trimpsi)V(NO)Br(2) (2) and (trimpsi)V(NO)I(2) (3) are formed by the reactions of (trimpsi)V(CO)(2)(NO) with Br(2) and I(2), respectively. The complexes (trimpsi)M(NO)I(2)(PMe(3)) (M = Nb, 4; Ta, 5) can be isolated in moderate to low yields when the (trimpsi)M(CO)(2)(NO) compounds are sequentially treated with 1 equiv of I(2) and excess PMe(3). The reaction of (trimpsi)V(CO)(2)(NO) with 2 equiv of ClNO forms 1 in low yield, but the reactions of (trimpsi)M(CO)(2)(NO) (M = Nb, Ta) with 1 equiv of ClNO generate (trimpsi)M(NO)(2)Cl (M = Nb, 6; Ta, 7). Complexes 6 and 7 are thermally unstable and decompose quickly at room temperature; consequently, they have been characterized solely by IR and (31)P[(1)H] NMR spectroscopies. All other new complexes have been fully characterized by standard methods, and the solid-state molecular structures of 1.3CH(2)Cl(2), 4.(3/4)CH(2)Cl(2), and 5.THF have been established by single-crystal X-ray diffraction analyses. A convenient method of generating Cl(15)NO has also been developed during the course of these investigations.  相似文献   

13.
Investigations of the effect of halogen size on structure stability have been conducted in well-reduced and heavily interbridged zirconium chloride-iodide cluster systems. The title compounds are obtained in good yields from reactions of Zr, ZrCl(4), ZrI(4), and B or Be in sealed Ta tubes for approximately 4 weeks at 850 degrees C. Single-crystal diffraction at room temperature established these as Zr(6)Cl(1.65(4))I(10.35(4))Be and Zr(6)Cl(1.27(3))I(10.73(3))B [R&thremacr;, Z = 3, a = 14.3508(8), 14.389(1) ?, c = 9.8777(9), 9.915(2) ?, respectively] and Zr(6)Cl(11.47(2))I(1.53(2))B [P4(2)/mnm, Z = 2, a = 12.030(1) ?, c = 7.4991(8) ?]. These are derivatives of the Zr(6)I(12)C and orthorhombic Zr(6)Cl(13)B structures, respectively, the latter containing unusual linear chains of clusters interbridged by Cl(i-i) that are in turn interconnected by three-bonded Cl(a-a-a) atoms. The random substitution of fractional Cl at specific I sites in the first two, and I for certain Cl in the third, was positionally resolved in all cases. The replacement always occurs at two-bonded X(i), so that single types of halogen are left in sites that interconnect clusters and generate the three-dimensional array. Structural changes seen in both structures are specifically related to relief of X.X crowding in the parent structure (matrix effects). Substitution of Cl for I(i) in the Zr(6)I(12)C type greatly reduces intercluster I.I repulsions and allows, among other things, a 0.20 ? (5.8%) reduction in Zr-I(a-i) intercluster bond lengths. Increased Cl.I repulsions caused by I substitution in orthorhombic Zr(6)Cl(13)B (Pnnm) convert the twisted chains and angular Cl(a-a-a) interchain bridges to planarity in tetragonal Zr(6)Cl(11.5)I(1.5)B. Phase widths found are 0 相似文献   

14.
Slow uptake of molecular dihydrogen by the diiridium(I) prototype [Ir(mu-pz)(PPh(3))(CO)](2) (1: pzH = pyrazole) is accompanied by formation of a 1,2-dihydrido-diiridium(II) adduct [IrH(mu-pz)(PPh(3))(CO)](2) (2), for which an X-ray crystal structure determination reveals that (unlike in 1) the PPh(3) ligands are axial, with the hydrides occupying trans coequatorial positions across the Ir-Ir bond (2.672 A). Reaction with CCl(4) effects hydride replacement in 2, affording the monohydride Ir(2)H(Cl)(mu-pz)(2)(PPh(3))(2)(CO)(2) (3) in which Ir-Ir = 2.683 A. At one metal center, H is equatorial and PPh(3) is axial, while at the other, Cl is axial as is found in the symmetrically substituted product [Ir(mu-pz)(PPh(3))(CO)Cl](2) (4) (Ir-Ir = 2.754 A) that is formed by action of CCl(4) on 1. Treatment of 1 with I(2) yields the diiodo analogue 5 of 4, which reacts with LiAlH(4) to afford the isomorph Ir(2)H(I)(mu-pz)(2)(PPh(3))(2)(CO)(2) (6) of 3 (Ir-Ir = 2.684 A). Protonation (using HBF(4)) of 1 results in formation of the binuclear cation Ir(2)H(mu-pz)(2)(PPh(3))(2)(CO)(2)(+) (7: BF(4)(-) salt), which shows definitive evidence (from NMR) for a terminally bound hydride in solution (CH(2)Cl(2) or THF), but 7 crystallizes as an axially symmetric unit in which Ir-Ir = 2.834 A. Reaction of 7 with water or wet methanol leads to isolation of the cationic diiridium(III) products [Ir(2)H(2)(mu-OX)(mu-pz)(2)(PPh(3))(2)(CO)(2)]BF(4) (8, X = H; 9, X = Me).  相似文献   

15.
The reaction of (NBu(n)(4))[Mn(8)O(6)Cl(6)(O(2)CPh)(7)(H(2)O)(2)] (1) with 2-(hydroxymethyl)pyridine (hmpH) or 2-(hydroxyethyl)pyridine (hepH) gives the Mn(II)(2)Mn(III)(10) title compounds [Mn(12)O(8)Cl(4)(O(2)CPh)(8)(hmp)(6)] (2) and [Mn(12)O(8)Cl(4)(O(2)CPh)(8)(hep)(6)] (3), respectively, with X = Cl. Subsequent reaction of 3 with HBr affords the Br(-) analogue [Mn(12)O(8)Br(4)(O(2)CPh)(8)(hep)(6)] (4). Complexes 2.2Et(2)O.4CH(2)Cl(2), 3.7CH(2)Cl(2), and 4.2Et(2)O.1.4CH(2)Cl(2) crystallize in the triclinic space group P1, monoclinic space group C2/c, and tetragonal space group I4(1)/a, respectively. Complexes 2 and 3 represent a new structural type, possessing isomeric [Mn(III)(10)Mn(II)(2)O(16)Cl(2)] cores but with differing peripheral ligation. Complex 4 is essentially isostructural with 3. A magnetochemical investigation of complex 2 reveals an S = 6 or 7 ground state and frequency-dependent out-of-phase signals in ac susceptibility studies that establish it as a new class of single-molecule magnet. These signals occur at temperatures higher than those observed for all previously reported single-molecule magnets that are not derived from [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(x)]. A detailed investigation of forms of complex 2 with different solvation levels reveals that the magnetic properties of 2 are extremely sensitive to the latter, emphasizing the importance to the single-molecule magnet properties of interstitial solvent molecules in the samples. In contrast, complexes 3 and 4 are low-spin molecules with an S = 0 ground state.  相似文献   

16.
The tripodal ligands NP(3)(tris[2-(diphenylphosphino)ethyl]amine) and PP(3)(tris[2-(diphenylphosphino)ethyl]phosphine), form five-coordinate [Pd(NP(3))X]X [X = Cl (1), Br (2)], [M(PP(3))X]X [M = Pd: X = Cl (4), Br (5), I (6); M = Pt, X = Cl (7), Br (8), I (9)] and four-coordinate[Pd(NP(3))I]I (3) complexes containing three fused rings around the metal. The interaction between Au(tdg)X (tdg = thiodiglycol; X = Cl, Br) or AuI and the respective ionic halo complexes 1-9 in a 1:1 stoichiometric ratio occurs via a ring-opening reaction with formation of the heterobimetallic systems PdAu(NP(3))X(3)[X = Cl (11), Br (12), I (13)], [MAu(PP(3))X(2)]X [M = Pd: X = Cl (14), Br (15), I (16); M = Pt: X = Cl (17), Br (18), I (19)]. The cations of complexes 17 and 18 were shown, by X-ray diffraction, to contain a distorted square-planar Pt(II) arrangement (Pt(P(2)P)X) where PP(3) is acting as tridentate chelating ligand and an almost linear PAuX moiety bearing the dangling phosphorus formed in the ring-opening process. PPh(3) coordinates to Au(I) and not to M(II) when added in excess to 14 and 17. Complexes 14-17 and [Pt(P(4))](BPh(4))(2) (10) (P4=linear tetraphosphine) also react with A(I), via chelate ring-openings to give MAu(2)(PP(3))X(4) [M = Pd: X = Cl (20), Br (21), I (22); M = Pt: X = Cl (23)] and [Pt(2)Au(2)(mu-Cl)(2)(mu-P(4))(2)](BPh(4))(4) (24), respectively.  相似文献   

17.
Novel neutral and cationic Rh(I) and Ir(I) complexes that contain only DMSO molecules as dative ligands with S-, O-, and bridging S,O-binding modes were isolated and characterized. The neutral derivatives [RhCl(DMSO)(3)] (1) and [IrCl(DMSO)(3)] (2) were synthesized from the dimeric precursors [M(2)Cl(2)(coe)(4)] (M=Rh, Ir; COE=cyclooctene). The dimeric Ir(I) compound [Ir(2)Cl(2)(DMSO)(4)] (3) was obtained from 2. The first example of a square-planar complex with a bidentate S,O-bridging DMSO ligand, [(coe)(DMSO)Rh(micro-Cl)(micro-DMSO)RhCl(DMSO)] (4), was obtained by treating [Rh(2)Cl(2)(coe)(4)] with three equivalents of DMSO. The mixed DMSO-olefin complex [IrCl(cod)(DMSO)] (5, COD=cyclooctadiene) was generated from [Ir(2)Cl(2)(cod)(2)]. Substitution reactions of these neutral systems afforded the complexes [RhCl(py)(DMSO)(2)] (6), [IrCl(py)(DMSO)(2)] (7), [IrCl(iPr(3)P)(DMSO)(2)] (8), [RhCl(dmbpy)(DMSO)] (9, dmbpy=4,4'-dimethyl-2,2'-bipyridine), and [IrCl(dmbpy)(DMSO)] (10). The cationic O-bound complex [Rh(cod)(DMSO)(2)]BF(4) (11) was synthesized from [Rh(cod)(2)]BF(4). Treatment of the cationic complexes [M(coe)(2)(O=CMe(2))(2)]PF(6) (M=Rh, Ir) with DMSO gave the mixed S- and O-bound DMSO complexes [M(DMSO)(2)(DMSO)(2)]PF(6) (Rh=12; Ir=in situ characterization). Substitution of the O-bound DMSO ligands with dmbpy or pyridine resulted in the isolation of [Rh(dmbpy)(DMSO)(2)]PF(6) (13) and [Ir(py)(2)(DMSO)(2)]PF(6) (14). Oxidative addition of hydrogen to [IrCl(DMSO)(3)] (2) gave the kinetic product fac-[Ir(H)(2)Cl(DMSO)(3)] (15) which was then easily converted to the more thermodynamically stable product mer-[Ir(H)(2)Cl(DMSO)(3)] (16). Oxidative addition of water to both neutral and cationic Ir(I) DMSO complexes gave the corresponding hydrido-hydroxo addition products syn-[(DMSO)(2)HIr(micro-OH)(2)(micro-Cl)IrH(DMSO)(2)][IrCl(2)(DMSO)(2)] (17) and anti-[(DMSO)(2)(DMSO)HIr(micro-OH)(2)IrH(DMSO)(2)(DMSO)][PF(6)](2) (18). The cationic [Ir(DMSO)(2)(DMSO)(2)]PF(6) complex (formed in situ from [Ir(coe)(2)(O=CMe(2))(2)]PF(6)) also reacts with methanol to give the hydrido-alkoxo complex syn-[(DMSO)(2)HIr(micro-OCH(3))(3)IrH(DMSO)(2)]PF(6) (19). Complexes 1, 2, 4, 5, 11, 12, 14, 17, 18, and 19 were characterized by crystallography.  相似文献   

18.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials.  相似文献   

19.
Wang X  Sheng TL  Fu RB  Hu SM  Xiang SC  Wang LS  Wu XT 《Inorganic chemistry》2006,45(14):5236-5238
Reaction of [Cu(PPh3)2(MeCN)2]ClO4 (1) and Sn(edt)2 (edt = ethane-1,2-dithiolate) in dichloromethane afforded a novel compound [Sn3Cu4(S2C2H4)6(mu3-O)(PPh3)4](ClO4)2 x 3 CH2Cl2 (2), which is the first example of the heptanuclear Sn(IV)-Cu(I) oxosulfur complex with a bottle-shaped cluster core. Complex 2 gives a blue-green luminescent emission in the solid state. Crystallographic data for 2: C87H90Cl8Cu4O9P4S12Sn3, trigonal, space group R3, M = 2682.02, a = 18.156(2) A, b = 18.156(2) A, c = 54.495(10) A, gamma = 120 degrees, V = 15558(4) A3, Z = 6 (T = 130.15 K).  相似文献   

20.
A series of linear-type Co(III)Pt(II)Co(III) trinuclear complexes composed of C(2)-cis(S)-[Co(aet)(2)(en)](+) (aet = 2-aminoethanethiolate) and/or Lambda(D)-trans(N)-[Co(D-pen-N,O,S)(2)](-) (D-pen = D-penicillaminate) were newly prepared, and their chiral behavior, which is markedly different from that of the corresponding Co(III)Pd(II)Co(III) complexes, is reported. The 1:1 reaction of an S-bridged Co(III)Ni(II)Co(III) trinuclear complex, [Ni[Co(aet)(2)(en)](2)]Cl(4), with K(2)[PtCl(4)] in water gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(2)(en)](2)]Cl(4) ([1]Cl(4)), while the corresponding 1:2 reaction produced an S-bridged Co(III)Pt(II) dinuclear complex, [PtCl(2)[Co(aet)(2)(en)]]Cl ([2]Cl). Complex [1](4+) formed both racemic (DeltaDelta/LambdaLambda) and meso (DeltaLambda) forms, which were separated and optically resolved by cation-exchange column chromatography. An optically active S-bridged Co(III)Pt(II)Co(III) trinuclear complex having the pseudo LambdaLambda configuration, Lambda(D)Lambda(D)-[Pt[Co(D-pen-N,O,S)(2)](2)](0) (Lambda(D)Lambda(D)-[3]), was also prepared by reacting Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] with K(2)[PtCl(4)] in a ratio of 2:1 in water. Treatment of the racemic Delta/Lambda-[2]Cl with Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] in a ratio of 1:1 in water led to the formation of LambdaLambda(D)- and DeltaLambda(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,O,S)(2)]](2+) (LambdaLambda(D)- and DeltaLambda(D)-[4](2+)) and DeltaDelta(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,S)(2)(H(2)O)(2)]](2+) (DeltaDelta(D)-[4'](2+)), besides trace amounts of Lambda(D)Lambda(D)-[3] and DeltaDelta- and DeltaLambda-[1](4+). These Co(III)Pt(II)Co(III) complexes were characterized on the basis of electronic absorption, CD, and NMR spectra, along with single-crystal X-ray analyses for DeltaDelta/LambdaLambda-[1]Cl(4), DeltaLambda-[1]Cl(4), and DeltaLambda(D)-[4]Cl(2). Crystal data: DeltaDelta/LambdaLambda-[1]Cl(4).6H(2)O, monoclinic, space group C2/c with a = 14.983(3) A, b = 19.857(4) A, c = 12.949(3) A, beta = 113.51(2) degrees, V = 3532(1) A(3), Z = 4; DeltaLambda-[1]Cl(4).3H(2)O, orthorhombic, space group Pbca with a = 14.872(3) A, b = 14.533(3) A, c = 14.347(2) A, V = 3100(1) A(3), Z = 4; DeltaLambda(D)-[4]Cl(2).6H(2)O, monoclinic, space group P2(1) with a = 7.3836(2) A, b = 20.214(1) A, c = 10.622(2) A, beta = 91.45(1) degrees V = 1682.0(4) A(3), Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号