首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The fabrication method and the pyroelectric response of a single element infrared sensor based lead zirconate titanate (PZT) particles and polyvinylidene fluoride P(VDF-TrFE) copolymer composite thick film is reported in this paper. A special thermal insulation structure, including polyimide (PI) thermal insulation layer and thermal insulation tanks, was used in this device. The thermal insulation tanks were fabricated by laser micro-etching technique. Voltage responsivity (RV), noise voltage (Vnoise), noise equivalent power (NEP), and detectivity (D*) of the PZT/P(VDF-TrFE) based infrared sensor are 1.2 × 103 V/W, 1.25 × 106 V Hz1/2, 1.1 × 10−9 W and 1.9 × 108 cm Hz1/2 W−1 at 137.3 Hz modulation frequency, respectively. The thermal time constant of the infrared sensor τT was about 15 ms. The results demonstrate that the composite infrared sensor show a high detectivity at high chopper frequency, which is an essential advantage in infrared detectors and some other devices.  相似文献   

2.
The sensing characteristics of light emitting conjugated polymer MEH-PPV for nitro aromatic explosives were studied in this paper. MEH-PPV was deposited on the surface of U-shaped plastic optical fiber (POF) using dip-coating techniques. The influences of MEH-PPV concentrations and bending radius of the U-shaped sensor heads on the sensitivity of the sensor were studied. The sensor was found to be most sensitive to TNT range from 0 to 4 mg/100 ml and the sensitivity was about 4 ng/ml. The limit of detections was around 1–10 ng/ml. It was also found that the conjugated polymer changes color from red to brownish black when the sensor head was put into TNT solution which provided high selectivity for sensing TNT at room temperature.  相似文献   

3.
A photoacoustic gas sensor using a near-infrared tunable fiber laser and based on wavelength modulation spectroscopy technique is developed. This sensor is capable of quasi-simultaneous quantification of water vapour, acetylene, carbon dioxide, and carbon monoxide (H2O, C2H2, CO and CO2) concentrations in the fire emulator. The feasibility of using this sensor as an early fire detector was demonstrated. The fire warning gases from smoldering paper were measured. The peak concentrations of gases from smoldering paper were 20,300 ppm H2O, 2.1 ppm C2H2, 756 ppm CO, and 1612 ppm CO2 after 400 s.  相似文献   

4.
In the present paper, a laser-coupled optical fiber is introduced for pH sensing of Methyl red solution in the Ethanol solvent. Then it is modified for corrosion detection when it was placed inside a corrosive solution. Second-harmonic (SH) radiation of a microchip Q-switched pulsed Nd:YAG laser operating at λ=532 nm is generated via KTP nonlinear crystal, and it is launched into the fabricated fiber sensor. The provided evanescent field is absorbed by the surrounding environment in the sensing region, and the output intensity of the absorbed laser beam is monitored and recorded in the presence of the different kind of solvents and corrosive solutions. To increase the sensitivity of the pH sensor the fiber-optic probe is coiled and fixed on a Poly Propylene (PP) mount with 6 cm diameter and 10 cm long. The fabricated sensor is then calibrated for pH measurement of unknown media. For corrosion detection, a spin motor is used to uniformly coat a small portion of the fiber designed as U-shaped after its clad was removed by a simple chemical method. It is then electroplated by a very thin Fe–C film to form a corrosion sensor. It is observed that while the concentration of the NH4Cl solution is changed from 0.068 to 0.125 mol/l and its pH from zero to 14, the output intensity of the launched laser is increased due to the Fe–C film corrosion.  相似文献   

5.
Hydrogen is being seen as a potentially inexhaustible, clean power supply. Direct hydrogen production and storage techniques that would eliminate carbon by-products and compete in cost are accelerated in R&D due to the recent sharp price increase of crude oil. But hydrogen is also linked with certain risks of use, namely the danger of explosions if mixed with air due to the very low energy needed for ignition and the possibility to diminish the ozone layer by undetected leaks. To reduce those risks efficient, sensitive and very early warning systems are needed. This paper will contribute to this challenge in adopting the optical method of Surface-Plasmon-Resonance (SPR) Spectroscopy for a sensitive detection of hydrogen concentrations well below the lower explosion limit. The technique of SPR performed with fiberoptics would in principle allow a remote control without any electrical contacts in the potential explosion zone. A thin palladium metal layer has been studied as sensing element. A simulation programme to find an optimum sensor design lead to the conclusion that an Otto-configuration is more advantageous under intended “real world” measurement conditions than a Kretschmann configuration. This could be experimentally verified. The very small air gap in the Otto-configuration could be successfully replaced by a several hundred nm thick intermediate layer of MgF2 or SiO2 to ease the fabrication of hydrogen sensor-chips based on glass slide substrates. It could be demonstrated that by a separate detection of the TM- and TE-polarized light fractions the TE-polarized beam could be used as a reference signal, since the TE-part does not excite surface plasmons and thus is not influenced by the presence of hydrogen. Choosing the measured TM/TE intensity ratio as the analytical signal a sensor-chip made from a BK7 glass slide with a 425 nm thick intermediate layer of SiO2 and a sensing layer of 50 nm Pd on top allowed a drift-free, reliable and reversible determination of hydrogen concentrations up to about 10 vol.% in dry or humid air with a detection limit of 0.04 vol.% with response times of around 2 min.  相似文献   

6.
We propose a special refractive index sensor design based on a photonic crystal fiber. Two analyte channels are introduced, with one analyte channel coated with gold layer and the other one without gold layer. A hybrid resonance method is used in the sensor to achieve a large dynamic index range, where surface plasmon resonance occurs when the analyte index is lower than that of the fiber material, while the core mode couples with the resonant mode of the adjacent analyte-filled cylinder when the analyte index is larger than the fiber material. When considering fluorinated polymer fibers, a broad index range of analyte refractive index from 1.25 to 1.45 with high sensitivity can be achieved. The maximal sensitivities reach 1.4 × 104 nm/RIU and 2.7 × 104 nm/RIU respectively when refractive index is in the range of 1.25 to 1.383 and 1.383 to 1.45. The sensor characteristics, make this simple sensor very interesting for detecting a wide range of fluid's refractive index or chemical agent concentration.  相似文献   

7.
A mid-infrared carbon monoxide (CO) sensor system based on a dual-channel differential detection method was developed using a broadband light source in the 4.60 µm wavelength region and a single-reflection spherical optical chamber with ∼0.373 m absorption path length. CO detection was realized by targeting the wideband strong absorption lines within 4.55–4.65 µm. A dual-channel pyroelectric detector as well as a self-developed digital signal processor (DSP) based orthogonal lock-in amplifier was employed to process CO sensing signal. A minimum detection limit of ∼0.5 ppm in volume (ppmv) was achieved with a measurement time of 6 s, based on an Allan deviation analysis of the sensor system. The response time (1000  0 ppmv) was determined to be ∼7 s for the CO sensor operation. Due to the characteristics of low detection limit, fast response time and high cost performance, the proposed sensor has relatively good prospect in coal-mining operation.  相似文献   

8.
We propose a refractometric sensor based on micro/nanofiber Bragg grating (MNFBG). The refractive index (RI) sensing performance dependence on the fiber radius and Bragg grating period of the sensor, as well as the temperature cross-sensitive effect, is investigated theoretically. The simulation results demonstrate that 400 nm-radius MNFBG has a linear response to RI ranging from 1.3 to 1.39 with a sensitivity as high as 992.7 nm/RIU and half temperature cross-sensitivity of normal FBG. A maximum sensitivity of up to 1200 nm/RIU and an outstanding RI resolution of 8.3 × 10-6 can be achieved. MNFBG has high potential in various types of optical fiber sensor applications.  相似文献   

9.
A novel bending sensor based on a long period fiber grating (LPG) is presented. A LPG was glued into a V-shaped groove, which lies on the lower surface of a meniscus shaped beam. It is found that the transmission optical power of the LPG changed linearly with the variation of the bending of the beam. The bending applied on the beam can be measured by detecting the intensity variation of the LPG's resonant dip wavelength. Under a relative large bending measured range from 0 to 7.5 m?1, the sensitivity of 3.003 dB m?1 and curvature resolution of 0.001 m?1 have been achieved for the proposed bending sensor.  相似文献   

10.
Here, we demonstrate an ionic liquid-assisted hydrothermal method for preparing Tb3+ and Eu3+ doped LaF3 hierarchical microstructures and the morphology is modified by hydrothermal reaction time, temperature of heating and ionic liquid concentration. The mechanism related to morphology control is proposed and discussed. It is also found that PL intensity, decay time and quantum efficiency are sensitive to the morphology. The average decay times are 2.9 ms and 4.8 ms for Eu3+ doped LaF3 microstructures prepared at 10 min and 3 h reaction time, respectively. The average decay time is increased from 4.8 ms to 5.8 ms after heating the sample at 500 °C. The quantum efficiency varies from 34% to 67% with changing morphology. Analysis suggests that morphology plays an important role on efficiency of rare-earth doped materials.  相似文献   

11.
This paper proposes a novel design for a surface plasmon resonance (SPR) fiber sensor with an axisymmetric sub-wavelength metal grating layer. The relationship between the sensor performance (the sensitivity S and the quality factor Q of the SPR dip) and the characteristic parameters are investigated. Numerical simulation results show that the proposed sensor can achieve a maximum sensitivity of 13,000 nm/RIU (refractive index unit) for a refractive index range from 1.3 to 1.4.  相似文献   

12.
Houhui Liang  Mingming Sun  Yongxing Jin 《Optik》2013,124(24):6676-6678
An optical fiber twist sensor based on Sagnac single-mode optic fiber interferometer is proposed. The stress-induced birefringence of single-mode optical fiber is obtained by applying a transverse force against a short length of singlemode fiber. A high sensitivity and resolution of the twist angle measurement of 0.19 nm/° and 0.002° is achieved experimentally, respectively. The proposed sensor is more convenient and simple than that of standard polarization-maintaining fibers.  相似文献   

13.
A novel curvature sensor based on optical fiber Mach–Zehnder interferometer (MZI) is demonstrated. It consists of two spherical-shape structures and a long-period grating (LPG) in between. The experimental results show that the shift of the dip wavelength is almost linearly proportional to the change of curvature, and the curvature sensitivity are −22.144 nm/m−1 in the measurement range of 5.33–6.93 m−1, −28.225 nm/m−1 in the range of 6.93–8.43 m and −15.68 nm/m−1 in the range of 8.43–9.43 m−1, respectively. And the maximum curvature error caused by temperature is only −0.003 m−1/°C. The sensor exhibits the advantages of all-fiber structure, high mechanical strength, high curvature sensitivity and large measurement scales.  相似文献   

14.
PurposeTo develop a 3D black-blood T2 mapping sequence with a combination of compressed sensing (CS) and parallel imaging (PI) for carotid wall imaging.Materials and methodsA 3D black-blood fast-spin-echo (FSE) sequence for T2 mapping with CS and PI was developed and validated. Phantom experiments were performed to assess T2 accuracy using a Eurospin Test Object, with different combination of CS and PI acceleration factors. A 2D multi-echo FSE sequence was used as a reference to evaluate the accuracy. The concordance correlation coefficient and Bland-Altman statistics were calculated. Twelve volunteers were scanned twice to determine the repeatability of the sequence and the intraclass correlation coefficient (ICC) was reported. Wall-lumen sharpness was calculated for different CS and PI combinations. Six patients with carotid stenosis > 50% were scanned with optimised sequence. The T2 maps were compared with multi-contrast images.ResultsPhantom scans showed good correlation in T2 measurement between current and reference sequence (r = 0.991). No significant difference was found between different combination of CS and PI accelerations (p = 0.999). Volunteer scans showed good repeatability of T2 measurement (ICC: 0.93, 95% CI 0.84–0.97). The mean T2 of the healthy wall was 48.0 ± 9.5 ms. Overall plaque T2 values from patients were 54.9 ± 12.2 ms. Recent intraplaque haemorrhage and fibrous tissue have higher T2 values than the mean plaque T2 values (88.1 ± 6.8 ms and 62.7 ± 9.3 ms, respectively).ConclusionThis study demonstrates the feasibility of combining CS and PI for accelerating 3D T2 mapping in the carotid artery, with accurate T2 measurements and good repeatability.  相似文献   

15.
The molecular surface structure of an ionic liquid (IL) with and without the presence of water was studied with the surface sensitive technique neutral impact collision ion scattering spectroscopy (NICISS). The IL chosen is 1-hexyl-3-methylimidazolium chloride, which is known to be hydrophilic. Binary mixtures were investigated within the water mole fraction range 0.43  χwater  0.71 at 283 K. During approximately 3 h exposition time in vacuum, we have observed a very low water loss rate from sample. The NICISS measurements suggest that admixture of water to [HMIm]Cl leads to a layered surface structure. Three layers were identified (layer 1 — cations, layer 2 — cations and water, layer 3 — cations, water, and anions). While the first layer is unaffected by water, the thickness of the second layer depends on the water concentration. The thickness of layer 2 is relatively constant for water concentrations χwater  0.61, but increases for water contents χwater  0.68. The concentration range 0.61  χwater  0.68 seems to play a key role in water network formation.  相似文献   

16.
《Radiation measurements》2009,44(3):311-324
The huge Guarani aquifer located in the South American continent is a very important resource for the region, and its drinking water quality has been investigated according to international standards, inclusive radiological parameters. This paper describes 210Po and 210Pb activity concentration data in groundwater samples collected at the Brazilian portion of Guarani aquifer, that is characterized by a great variability of temperature (18–70 °C), pH (4.0–9.9), sodium content (0.3–322 mg/l), bicarbonate content (0.1–318 mg/l), etc. Non-expensive alpha counting following some radiochemical steps for extracting and depositing dissolved 210Po was used. The results of the measurements for samples collected in duplicate yielded a maximum 210Po activity concentration of 3.7 mBq/L and a maximum 210Pb activity concentration of 6.7 mBq/l, that are values greatly lower than the guidance level of 0.1 Bq/l established by the WHO for their presence in drinking water. The high sensitivity of the method allowed its applicability on the identification of complexes geochemical and hydrogeological processes occurring in Guarani aquifer as well on the evaluation of the drinking water quality in terms of dose calculations.  相似文献   

17.
In this work, a self-heating type optical fiber flowmeter with high sensitivity was proposed. The core-offset fiber structures were employed to couple a part of signal light into the fiber cladding layer, and the other part of light still propagated in the core layer. The intermodal interference between the two parts of light happened when the cladding modes were coupled back into core layer. Meanwhile, the high power laser was also introduced into fiber to heat the silver film coated on the surface of the cladding layer. When the cool gas flow passed, the temperature of the sensor probe decreased due to the heat transfer process. Because of the thermo-optic effect in the fiber, interference spectrum could be shifted when the temperature was changed. The experimental results showed the resolution of the proposed sensor was 2×10−2 m/s in the region of 0–8 m/s. The highest sensitivity could achieve 1537 pm/(m/s).  相似文献   

18.
In this paper, two hybrid multimode/single mode fiber FabryPérot (FP) cavities were compared. The cavities fabricated by chemical etching are presented as high temperature and strain sensors. In order to produce this FP cavity a single mode fiber was spliced to a graded index multimode fiber with 62.5 μm core diameter. The FabryPérot cavities were tested as a high temperature sensor in the range between room temperature and 700 °C and as strain sensors. A reversible shift of the interferometric peaks with temperature allowed to estimate a sensitivity of 0.75 ± 0.03 pm/°C and 0.98 ± 0.04 pm/°C for the sensor A and B respectively. For strain measurement sensor A demonstrated a sensitivity of 1.85 ± 0.07 pm/μ? and sensor B showed a sensitivity of 3.14 ± 0.05 pm/μ?. The sensors demonstrated the feasibility of low cost fiber optic sensors for high temperature and strain.  相似文献   

19.
A multilayer interface was formed in the Al matrix composite which was reinforced by 30% volume fraction of TiNi fiber. The composite was fabricated by pressure infiltration process and the interface between the TiNi fiber and Al matrix was investigated by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). When the TiNi fiber was pre-oxidized in the air at 773 K for 1 h, three layers have been found and characterized in the interface: TiNi–B2 layer near the TiNi fiber, Ti–Al compound layer with Ti and granular TiO2 near the Al matrix, and Ti–Ni compound layer between TiNi–B2 and Ti–Al compound layers. The effect of the multilayer interface on the mechanical properties of the composite was also discussed. The result showed that the uniaxial tensile strength of the composite at room temperature was 318 MPa, which was very close to the theoretical calculation value of 326 MPa. Moreover, the composite with good ductility exhibited a typical ductile-fracture pattern.  相似文献   

20.
A highly birefringent dispersion compensating hybrid photonic crystal fiber is presented. This fiber successfully compensates the chromatic dispersion of standard single mode fiber over E- to L-communication bands. Simulation results reveal that it is possible to obtain a large negative dispersion coefficient of about −1054.4 ps/(nm km) and a relative dispersion slope of 0.0036 nm−1 at the 1550 nm wavelength. The proposed fiber simultaneously provides a high birefringence of order 3.45 × 10−2 at the 1550 nm. Moreover, it is confirmed that the designed fiber successfully operates as a single mode in the entire band of interest. For practical conditions, the sensitivity of the fibers dispersion properties to a ±2% variation around the optimum values is carefully studied and the nonlinearity of the proposed fiber is also reported and discussed. Such fibers are essential for high speed transmission system as a dispersion compensator, sensing applications, fiber loop mirrors as well as maintaining single polarization, and many nonlinear applications such as four-wave mixing, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号