首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
称X∈R~(m×n)为实(R,S)对称矩阵,若满足X=RXS,其中R∈R~(m×m)和S∈R~(n×n)为非平凡实对合矩阵,即R=R~(-1)≠±I_m,S=S~(-1)≠±I_n.该文将优化理论中求凸集上光滑函数最小值的增广Lagrangian方法应用于求解矩阵不等式约束下实(R,S)对称矩阵最小二乘问题,即给定正整数m,n,p,t,q和矩阵A_i∈R~(m×m),B_i∈R~(n×n)(i=1,2,…,q),C∈R~(m×m),E∈R~(p×m),F∈R~(n×t)和D∈R~(p×t),求实(R,S)对称矩阵X∈R~(m×m)且在满足相容矩阵不等式EXF≥D约束下极小化‖∑_(i=1)~qA_iXB_i-C‖,其中EXF≥D表示矩阵EXF-D非负,‖·‖为Frobenius范数.该文给出求解问题的矩阵形式增广Lagrangian方法的迭代格式,并用数值算例验证该方法是可行且高效的.  相似文献   

2.
线性流形上对称正交反对称矩阵反问题的最小二乘解   总被引:1,自引:0,他引:1  
设P是n阶对称正交矩阵,如果n阶矩阵A满足AT=A和(PA)T=-PA,则称A为对称正交反对称矩阵,所有n阶对称正交反对称矩阵的全体记为SARnp.令S={A∈SARnp f(A)=‖AX-B‖=m in,X,B〗∈Rn×m本文讨论了下面两个问题问题Ⅰ给定C∈Rn×p,D∈Rp×p,求A∈S使得CTAC=D问题Ⅱ已知A~∈Rn×n,求A∧∈SE使得‖A~-A∧‖=m inA∈SE‖A~-A‖其中SE是问题Ⅰ的解集合.文中给出了问题Ⅰ有解的充要条件及其通解表达式.进而,指出了集合SE非空时,问题Ⅱ存在唯一解,并给出了解的表达式,从而得到了求解A∧的数值算法.  相似文献   

3.
对称矩阵与反对称矩阵广义特征值反问题的拓广   总被引:1,自引:0,他引:1  
臧正松 《数学研究》2006,39(1):61-67
定义了上三角等次对角线矩阵和上三角交错次对角线矩阵;讨论了矩阵方程AX-XA=0的对称解与AX XA=0的反对称解.在此基础上考虑了以下问题的可解性:给定A∈Rn×m,D∈Rm×m,分别求X,Y∈SRn×n和X,Y∈ASRn×n,使得XA=YDA.  相似文献   

4.
本文研究了半张量积下矩阵方程组AX=B,XC=D在不同情况下的最小二乘解X*∈R~(p×q),其中矩阵A∈R~(m×n),B∈R~(h×k),C∈R~(a×b),D∈R~(l×d)给定.根据半张量积的定义将其转变为普通乘积下的矩阵方程组,再结合矩阵奇异值分解及矩阵微分给出该方程组在不同情况下最小二乘解的解析表达式,并用数值算例加以验证.  相似文献   

5.
实对称矩阵广义特征值反问题   总被引:10,自引:0,他引:10  
本文研究如下实对称矩阵广义特征值反问题: 问题IGEP,给定X∈R~(n×m),1=diag(λ_II_k_I,…,λ_pI_k_p)∈R~(n×m),并且λ_I,…,λ_p互异,sum from i=1 to p(k_i=m,求K,M∈SR~(n×n),或K∈SR~(n×n),M∈SR_0~(n×m),或K,M∈SR_0~(n×n),或K∈SR~(n×n),M∈SR_+~(n×n),或K∈SR_0~(n×n),M∈SR_+~(n×n),或K,M∈SR_+~(n×m), (Ⅰ)使得 KX=MXA, (Ⅱ)使得 X~TMX=I_m,KX=MXA,其中SR~(n×n)={A∈R~(n×n)|A~T=A},SR_0~(n×n)={A∈SR~(n×n)|X~TAX≥0,X∈R~n},SR_+~(n×n)={A∈SR~(n×n)|X~TAX>0,X∈R~n,X≠0}. 利用矩阵X的奇异值分解和正交三角分解,我们给出了上述问题的解的表达式.  相似文献   

6.
基于交替投影算法求解单变量线性约束矩阵方程问题   总被引:2,自引:1,他引:1  
研究如下线性约束矩阵方程求解问题:给定A∈R~(m×n),B∈R~(n×p)和C∈R~(m×p),求矩阵X∈R(?)R~(n×n)"使得A×B=C以及相应的最佳逼近问题,其中集合R为如对称阵,Toeplitz阵等构成的线性子空间,或者对称半(ε)正定阵,(对称)非负阵等构成的闭凸集.给出了在相容条件下求解该问题的交替投影算法及算法收敛性分析.通过大量数值算例说明该算法的可行性和高效性,以及该算法较传统的矩阵形式的Krylov子空间方法(可行前提下)在迭代效率上的明显优势,本文也通过寻求加速技巧进一步提高算法的收敛速度.  相似文献   

7.
设S(n,q)是偶特征有限域F_q上n×n对称矩阵所成的集合.令R_i={(X,Y)|X,Y∈S(n,q),rank(Y-X)=2i-1,2i},0≤i≤[(n+1)/2]采用矩阵方法,证明了Sym(n,q)={s(n,q),{R_i}_(0≤i≤)[(n+1)/2]}是[(n+1)/2]个结合类的P—多项式对称结合方案,而Sym(n,q)的结合关系的图Γ~((1))是正则的,并且它同构于交错矩阵结合方案.此外,又给出Sym(n,q)的自同构形式.  相似文献   

8.
矩阵方程AXB+CYD=E对称最小范数最小二乘解的极小残差法   总被引:1,自引:0,他引:1  
<正>1引言本文用R~(n×m)表示全体n×m实矩阵集合,用SR~(n×n)表示全体n×n实对称矩阵集合,OR~(n×n)表示全体n×n实正交矩阵集合.用I_n表示n阶单位矩阵,用A*B表示矩阵A与B的Hadamard乘积.对任意矩阵A,B∈R~(n×m),定义内积〈A,B〉=tr(B~T A),其中  相似文献   

9.
Householder矩阵的又一特性   总被引:2,自引:0,他引:2  
给出了Householder矩阵的其它若干性质,利用本文中得到的正交向量组所对应的Householder矩阵的重要性质,解决了形如A=k1H1 k2H2 … knHn(ki∈R,Hi为n阶Householder矩阵,i=1,2,…n)的实对称阵的特性值与特征向量的问题,且任一实对称矩阵A均可表示为上述形式.  相似文献   

10.
张明利 《数学通报》2012,51(8):50-51
文[1]给出了不等式:已知x,y,z∈R+,m∈N+.求证:x/mx+y+z+y/x+my+z+z/x+y+mz≤3/m+2. 文[2]给出了不等式:已知xi>0(i=1,2,…n),k<1,求证: n∑i=1 xi/x1+x2+…+xi-1+kxi+xi+1+…+xn≥n/n+k-1. 文[3]给出了不等式:设ai>0(i=1,2,3,…,n),p∈R,q>0,且n∑i=1ai=A,Si=pai+q(A一ai)>0(i=1,2,…,n),求证:  相似文献   

11.
1引言设矩阵A∈C~(n×n),B∈C~(m×m),Q∈C~(n×m)为列满秩矩阵,令R=AQ-QB.当R的范数很小的时候,我们分析矩阵B的特征值对A的特征值的逼近性.当A,B都是Hermite阵时,上述问题已经被Kahan解决.近年来,对可对角化矩阵的情形,取得了一些新的成果.[4][5][6]中给出了几个范数不等式,并应用于矩阵特征值  相似文献   

12.
矩阵方程的最小二乘解   总被引:15,自引:3,他引:12  
1 引言与引理设 Rm× n表示所有 m× n阶实矩阵的集合 ,ORn× n为所有 n阶实正交矩阵的全体 ,In 是 n阶单位矩阵 .AT、A+、rank A分别表示矩阵 A的转置、MP逆及秩 ;‖·‖是矩阵的Frobenius范数 .此外 ,对于 A =(αij)∈ Rs× s,B =(βij)∈ Rs× s,A * B表示 A与 B的Hadamard积 ,其定义为 :A* B=(αijβij) 1≤ i,j≤ s,现考虑如下问题 :问题 P 给定 A∈Rn× m,B∈Rp× m,D∈Rm× m求 X∈Rn× p,使得Φ =‖ ATXB - BTXTA - D‖ =m in  我们知道 ,矩阵方程 ATX B- BTXTA=D在自动控制理论中有很重要的作用[1 ,2 ] .…  相似文献   

13.
刘修生 《大学数学》2007,23(5):134-136
设Sn是n次对称群,G为Sn的子群,χ是G的次数为1的特征标.如果A是一个n阶复变矩阵,定义一般矩阵函数dχG为dχG(A)=∑σ∈Gχ(σ)∏ni=1aiσ(i).本文用lp-算子范数(1≤p≤∞)的性质证明了一般矩阵函数变差的两个不等式.  相似文献   

14.
我们考虑非线性规划问题(P)■f(x),其中R={x|Ax=a,Bx≤b},A是p×n矩阵,其秩为p,B是q×n矩阵,x∈E~n,a∈E~p,b∈E~q,f(x)∈C~1.我们以R~*表示(P)的最优解集合,并假定R非空.最近,M.S.Bazaraa与J.J.Goode  相似文献   

15.
有限局部环Z/q~kZ上矩阵广义逆的几个计数结果   总被引:2,自引:1,他引:1  
设 R =Z/ qk Z是模整数 qk的有限局部环 ,其中 q是素数 ,k>1 .对 R上给定的 n阶矩阵 A,设 W1={X∈ Mn( R) |PAXP- 1=Q- 1XAQ, 1 P,Q∈ GLn( R) },W2 ={X∈ Mn( R) |AX =XA},W3={X∈ Mn( R) |AXA =A},W4 ={X∈ Mn( R) |XAX =X}.若 Wi≠Φ( i=1 ,2 ,3 ,4) ,用 n( Wi)表示 Wi中所有元素的个数 ,主要计算出 n( Wi) ( i =1 ,2 ,3 ,4)  相似文献   

16.
非奇异H矩阵的充分条件   总被引:23,自引:1,他引:22  
1 引言 设A=(a_(ij))∈C~(n,n),R_i(A)=sum from j≠i to(|a_(ij)|,i,j∈N={1,2,…,n}。若|a_(ij)|≥R_i(A),i∈N,则称A为对角占优矩阵,记为A∈D_0;若不等式中每个不等号都是严格的,则称A为严格对角占优矩阵,记为A∈D。若存在正对角矩阵X,使得AX∈D,则称A为广义严格对角占优矩阵,记为A∈D。  相似文献   

17.
研究如下界约束下算子方程最小二乘问题:min x∈Ω‖L(X:A_1,…,At;B_1,…,B_t)-T‖~2,其中‖.‖为Frobenius范数,L(X:A_1…A_t;B_1,…,B_t)为关于X的线性矩阵算子(或齐次线性变换),Ai∈R~(p×m),B_j∈R~(n×q)i,j=1,…,n为算子L的系数矩阵,丁为右端矩阵,ΩR~(m×n)为界约束凸集合.提出了求解问题的条件梯度迭代算法及其简要收敛性分析,并给出条件梯度算法的几类加速形式.随机数据和图像恢复模型数据的实验结果表明说明算法是可行高效的.  相似文献   

18.
该文描述带有矩量序列{v_m}_0~∞■C~(q×q)的完全不确定Hamburger矩阵矩量问题:v_m=integral from n=-∞to∞x~m dρ(x),m=0,1,…的有限阶解,即该问题的那些解ρ,使得C~(q×q)-值多项式的线性空间P在对应的空间L~2(R,dρ/E(x))内稠密,这里E(x)为在实轴R上取正值的某个数值多项式.作为预备知识,作者考虑所谓广义Akhiezer插值的矩阵变种与它的相关矩阵矩量问题之间的一种关系.  相似文献   

19.
1引言令R~(n×m)、OR~(n×n)、SR~(n×n)(SR_0~(n×n))分别表示所有n×m阶实矩阵、n阶实正交阵、n阶实对称矩阵(实对称半正定阵)的全体,A~ 表示A的Moore-Penrose广义逆,I_k表示k阶单位矩阵,S_k表示k阶反序单位矩阵。R(A)表示A的列空间,N(A)表示A的零空间,rank(A)表示矩阵A的秩。对A=(a_(ij)),B=(b_(ij))∈R~(n×m),A*B表示A与  相似文献   

20.
关于四元数矩阵乘积迹的不等式   总被引:1,自引:0,他引:1  
设 H~(m×n)为 m×n 四元数矩阵的集合,σ_1(A)≥…≥σ_n(A)为 A∈H~(mxn)的奇异值。本文证明了:1)设 A∈H~(mxm),B∈H~(mxm),r=min(m,m),则|tr(4B)|≤c r σ_i(A)σ_i(B).2)设 A_i∈H~(mxm),i=1,2,…,n,(A_1A_2…A_n)k为 A_1A_2…A_n 的任一个 k 阶主子阵,则|tr(A_1.A_2…A_n)_k|≤sun form i=1 to k σ_i(A_1)…σ_i(A_n).我们还得到四元数矩阵迹的其它一些不等式。这些结果推广和改进了文[1],[2]中的结果,进一步解决了 Bellman 猜想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号