首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于cDNA芯片的梨品种S基因型鉴定及新S-RNase基因进化分析   总被引:1,自引:0,他引:1  
梨品种S基因型鉴定对梨栽培中授粉品种选择和遗传育种都具有重要意义。本研究利用梨S-RNase基因荧光标记的特异引物PCR扩增获得梨品种荧光标记的cDNA特异产物;进一步完善梨S-RNase基因cDNA芯片,以被检测梨品种cDNA特异序列与梨S-RNase基因cDNA芯片杂交检测不同梨品种S基因型,并发现新的S-RNase基因。结果表明:利用梨S-RNase基因cDNA芯片鉴定了泸定王皮梨、兴山24号、弥渡百合等35个未知S基因型梨品种,确定了各品种的S基因型。结合PCRRFLP及DNA克隆和测序等技术,发现了7个新的S-RNase基因资源,获得了新S-RNase基因序列。序列分析表明各新S-RNase基因均具有S-RNase基因特异区域序列的典型特征;进化分析显示7个新S-RNase基因主要属于蔷薇科苹果亚科S-RNase类群,且存在种间和属间比种内和属内进化关系更近的现象。7个新的S基因分别命名为:PpS_(53)(Pyrus pyrifolia S53)、PpS_(54)、PpS_(55)、PpS_(56)、PpS_(57)、PpS_(58)和PpS_(59),GenBank登录号分别为:KX581753、KX581754、KX581755、KX581756、KX581757、KX581751和KX581752。  相似文献   

2.
[目的]优化梨自交不亲和基因(S-RNase或S基因)c DNA芯片杂交条件,利用芯片检测梨品种S基因型。[方法]提取梨品种雌蕊RNA,Cy3标记引物RT-PCR获得S基因荧光标记特异c DNA序列。设置不同杂交条件,用已知S基因型品种荧光标记的PCR产物在不同条件下分别与芯片杂交,杂交信号分析芯片杂交效果。用芯片优化杂交体系鉴定梨品种未知S基因型,DNA测序验证芯片鉴定结果。[结果]芯片杂交最佳条件:杂交温度42℃,杂交时间8~9 h,PCR纯化产物终浓度为200 ng·μl-1。优化杂交条件下芯片鉴定晚咸丰、秀水、丽江马占梨1、湘菊、木通梨、甘甜、弥渡小红梨、丽江大中古、金晶和弥渡火把等梨品种S基因型分别为:Pp S15Pp S52、Pp S4Pp S5、Pb S22Pp S37、Pp S1Pp S2、Pp S1Pp S3、Pp S13Pp S15、Pp S12Pb S42、Pb S21Pb S22、Pp S3Pp S60和Pp S5Pp S5。DNA测序验证各品种所含S基因与芯片鉴定结果一致。[结论]梨自交不亲和基因c DNA芯片优化杂交条件后可准确鉴定梨品种所含已鉴定的S基因资源。  相似文献   

3.
低密度cDNA芯片技术的优化   总被引:2,自引:0,他引:2  
为了建立稳定的低密度cDNA芯片技术平台,研究靶基因的最适长度、浓度、点样溶液种类及杂交反应动力学,并了解该芯片的重复性与可靠性.结果表明,杂交具有较好的特异性,不同长度(189~1078bp)、浓度(0.5g/L、1.0g/L、1.5g/L)的同一靶基因杂交信号强度无明显差别;以50%DMSO为点样溶液者杂交信号最好(P=0.0001).60℃杂交18h信号最佳(P<0.001).重复2次检测结果差异无显著性(P=0.348),重复性较好,其相关系数为0.588.与RT-PCR结果相比,相关系数为-0.778(P<0.0001),特异性为100%,灵敏度为80%(16/20),可靠性较好.  相似文献   

4.
病毒基因组有限的编码能力和以病毒蛋白为靶的抗病毒药物易出现耐药性,使从病毒感染宿主筛选病毒感染相关生物大分子作为抗病毒药靶和诊断标志物成为新的研究方向。为了筛选流行性感冒(流感)病毒感染相关基因,采用抑制消减杂交(suppression subtractive hybridization,SSH)技术,以流感病毒A/鲁防/93-9(H3N2)感染的MDCK细胞及正常MDCK细胞为材料,构建病毒感染特异性差减cDNA文库。从文库中随机挑取约800个克隆,PCR扩增其中插入片段,经纯化、紫外定量后,用基因芯片自动点样仪点在氨基片上,制备cDNA芯片。将流感病毒感染的MDCK细胞和正常MDCK细胞的总RNA分别用Cy3、Cy5反转录荧光标记后,与cDNA芯片杂交,用芯片扫描仪扫描获得芯片杂交信号,经阳性对照校正和归一化处理后,以如下条件作为判定基因差异表达的标准;(a)Cy3与Cy5的信号比值大于1.5(正常细胞用Cy5标记)或小于0.67(正常细胞用Cy3标记);(b)Cy3和Cy5信号值之一必须大于1000。经cDNA芯片筛选获得了18个流感病毒感染特异性克隆,经测序和生物信息学分析发现均为流感病毒感染相关新基因EST。流感病毒感染相关基因cDNA片段的获得,为新型病毒药靶诊断标志物发现和功能研究提供了基础。  相似文献   

5.
提取梨 (PyrusserotinaRehd .)自交不亲和品种“二十世纪”(基因型为S2 S4 )、自交亲和的突变品种“奥嗄二十世纪”(S2 SSM4 ,SM =Stylar_partmutant;花柱部分突变 )及其亲和后代花柱的可溶性蛋白。经等电聚焦电泳 (IEF_PAGE)分析表明 ,“奥嗄二十世纪”及其后代花柱仍存在SSM4 蛋白 ,但其含量逐代减少 ,同时发现“奥嗄二十世纪”的SSM4 基因仅在柱头表达 ,而“二十世纪”的S4 基因表达的部位除了柱头外 ,还包括花柱上部及花柱下部 ,且表达量呈现从柱头到花柱下部下降的趋势。S蛋白经等电聚焦电泳的凝胶板进行RNase活性染色处理 ,也得到相同的结果。从花柱 (包括柱头 )中纯化出的S蛋白经SDS_PAGE电泳后进行RNase活性染色的结果表明 ,S4 与SSM4 蛋白的分子量相近 (约 30kD) ,并且均具有RNase活性。进一步以酵母RNA为基质测定的比活性也基本相等 ,约为 2 75U·min-1·mg-1蛋白。在离体条件下 ,上述两种S蛋白 (S_RNase)也以相同的程度抑制S4 或SSM4 花粉发芽及花粉管伸长。研究证明 ,自交亲和突变品种“奥嗄二十世纪”的SSM4 基因也具有原始自交不亲和品种“二十世纪”S4 基因的功能。因此 ,其自交亲和的原因可归结为SSM4 基因的表达量较少及SSM4 基因仅在柱头中表达的缘故。  相似文献   

6.
植物自交不亲和基因研究进展   总被引:4,自引:0,他引:4  
自交不亲和性的研究是植物生殖生物学和分子生物学研究的热点之一,对自交不亲和基因和蛋白质的深入研究是解析自交不亲和性机理的关键.对控制孢子体自交不亲和性和配子体自交不亲和性的S基因及其蛋白质产物的分子生物学研究进展进行了综述.孢子体自交不亲和性植物S位点上至少存在3个基因,即SLG、SRK和SCR基因.其中SLG、SRK基因控制雌蕊自交不亲和性,而SCR控制花粉自交不亲和性.配子体自交不亲和植物雌蕊S基因产物为S-RNase,具有核酸酶活性;配子体自交不亲和植物花粉S基因产物尚未找到.  相似文献   

7.
樱桃品种S基因型及自交不亲和性分子机制研究进展   总被引:7,自引:0,他引:7  
系统介绍了樱桃S基因型鉴定的主要方法,全面列出上百个已知甜樱桃品种的S基因型,其中共涉及16个S基因;着重讨论了樱桃S基因座内S-RNase和SFB基因的研究概况、结构特点及位置关系,并提出该领域善待解决的问题。  相似文献   

8.
确定梨自交不亲和基因型研究的技术进展   总被引:1,自引:0,他引:1  
综述了运用杂交授粉试验和分子生物学方法等技术确定梨品种自交不亲和基因型研究的技术进展,分析了这些技术在确定梨品种自交不亲和基因型方面的优点和不足之处,并初步探讨了研究前景。因为HV区氨基酸的不同,不同S基因型也有所差异。因此,除了在分子生物学的水平上进行研究外,其他方法如mRNA、蛋白质和杂交授粉等水平上的研究在确定S基因型上也同样重要。  相似文献   

9.
cDNA芯片阳性对照的制备及在芯片敏感性分析中的应用   总被引:2,自引:0,他引:2  
cDNA芯片是一种高通量基因表达谱分析技术,在生理病理条件下细胞基因表达谱分析,新基因发现和功能研究等方面具有广阔应用前景。CDNA芯片阳性对照的选取以及CDNA芯片检测敏感性是芯片成功应用的关键问题之一。以在系统发育上与人类基因同源性小的荧火虫荧光素酶基因材料,制备了用于人类和其他动物基因表达谱CDNA芯片的通用型阳性对照探针和相应的mRNA参照物,经反转录对mRNA参照物进行Cy3荧光标记并与DNA芯片杂交后发现,mRNA参照物能特异性地与荧光酶基因cDNA片断杂交,而与人β-肌动蛋白基因,人G3PDH基因以及λDNA/HINDⅢ无杂交反应。把mRNA参照物以不同比例加入HepG2总RNA中,以反转录荧光标记后与CDNA芯片杂交,结果发现当总RNA中的MRNA含量为1/10^4稀释(即mRNA分子个数约为10^8个)时,CDNA芯片基本检测不出mRNA标记产物的杂交信号。而且,cDNA芯片检测的信号强度与芯片上固定的探针浓度密切相关,当探针浓度为2g/L时,杂交信号最强,随着探针浓度下降芯片的杂交信号趋于减弱。CDNA芯片通用型阳性参照物的制备以及应用于CDNA芯片检测敏感性研究为CDNA芯片应用于人和其他动物基因表达谱高通量分析和新基因功能研究提供了技术基础和理论依据。  相似文献   

10.
结合SSH和cDNA芯片技术在植物研究中的应用   总被引:1,自引:0,他引:1  
抑制性差减杂交(Suppression Subtractive Hybridization,SSH)技术是分离差异表达基因的一种新方法。cDNA芯片也是近年来发展起来的一种新技术,它是指将大量的特定的寡核苷酸片段或基因片段作为探针,有规律地排列固定于硅片、玻片、塑料片等固相支持物上制成的芯片。本文主要介绍抑制差减杂交和cDNA芯片技术原理及其在植物研究中的应用。  相似文献   

11.
cDNA芯片表面核酸固定化的优化   总被引:5,自引:0,他引:5  
cDNA芯片技术表面核酸固定化影响因素众多,其中涉及选择载体、固定于玻片的DNA片段浓度、玻片DNA片段的固定方法、玻片预处理方法、DNA片段的变性、溶解DNA片段的点样液等等.针对这些因素进行了优化筛选实验,以便于提高cDNA芯片技术检测基因表达的效率.  相似文献   

12.
cDNA微阵列数据中包含许多变异因素,用于检测差异表达基因和其它统计分析前,必须将这些“噪音”剔除。对数比法(背景校正、对数比转换和数据标准化)已经被广泛应用于cDNA微阵列数据分析中,然而这种方法却存在着一些亟待解决的缺陷。对此,该文提出一种非转换方法,它可免去对数比的转化过程,直接在背景校正后进行数据标准化,可以有效剔除实验“噪音”。研究结果表明:在检测差异表达基因的效率方面,非转换方法比常规的对数比法具有更好的稳健性和更高的检测功效,基因检出率和准确性大大提高。  相似文献   

13.
综述了核果类果树甜樱桃(Prunus avium L.)、杏(P. armeniaca L.)、扁桃(P. dulcis (Mill.) D. A.Webb)和梅(P. mume Sieb)等自交不亲和性的研究进展。着重讨论了S-RNase基因(S基因)和SLF基因(S-locus F-box基因,或称SFB基因),S基因在杂交后代群体中的遗传规律,利用S基因的遗传特性选育自交亲和品种和确定S基因型的主要方法及其特点以及自交亲和机制的几种可能的类型。  相似文献   

14.
分别以沙田柚自交花柱cDNA为tester,异交花柱cDNA为driver,利用抑制性消减杂交技术构建了消减文库,文库的重组率高于95%,插入片段集中在100~500 bp之间,对文库部分克隆进行测序并与GenBank中的同源序列进行比较,发现了一些类似于SI、S9-RNase、激酶类等与自交不亲和相关的基因.  相似文献   

15.
为克隆肺腺癌分化相关基因, 采用诱导分化与消减杂交相结合的策略, 建立了全反式维甲酸(RA)诱导前后人肺腺癌细胞系的cDNA消减文库, 得到124个cDNA消减克隆. 经加减法杂交差异筛选、DNA和RNA印迹、cDNA全序列测定和生物学功能分析, 分离到3个在人肺腺癌细胞系分化过程中由RA激活而特异表达的新的cDNA序列这一策略和技术路线适用于分离细胞中呈过量表达或表达抑制基因的cDNA克隆, 并具有反映细胞分化过程中基因表达动态变化特征和相对简便适用的特点.  相似文献   

16.
应用cDNA芯片分析79个新基因的人胚组织表达谱   总被引:5,自引:1,他引:4  
大规模cDNA测序和生物信息学技术相结合,得到来自于商品化的人胚肾cDNA文库79个代表新基因的表达序列标签(EST).随后,采用高速度机械手制备这些cDNA的基因芯片,用于鉴定79个新基因的ESTs在20周、26周两个胚胎时期6种组织中的基因表达状况,以研究这些EST片段代表的新基因功能提供线索.通过芯片杂交及结果分析,得到同一个组织两个不同时相8个差异表达的基因,随后的RNA印迹分析的结果与芯片杂交的结果相一致.  相似文献   

17.
核果类果树自交不亲和性研究进展   总被引:6,自引:0,他引:6  
综述了核果类果树甜樱桃(PFunus avium L.)、杏(P.armeniaca L.)、扁桃(P.dulcis(Mill.)D.A.Webb)和梅(P.mume Sieb)等自交不亲和性的研究进展.着重讨论了S-RNase基因(s基因)和SLF基因(S-locus F-box基因,或称SFB基因),S基因在杂交后代群体中的遗传规律,利用S基因的遗传特性选育自交亲和品种和确定S基因型的主要方法及其特点以及自交亲和机制的几种可能的类型.  相似文献   

18.
以从日本引进的苹果新品种斗南为试验材料,根据保守氨基酸序列"FTQQYQ"和"anti-1/WⅠPNV"设计苹果自交不亲和基因引物,P1:5′-TTTACGCAGCAATATCAG-3′;P2:5′-ACGTTCGGCCAAATA/CATT-3′。利用PCR-RFLP分析和目的片段测序方法得到了一个新的苹果自交不亲和基因-S33,其片段长度为348bp,包括P1、C2区和HV(含147bp的Intron)区。  相似文献   

19.
配子体自交不亲和植物花粉S基因研究进展   总被引:3,自引:0,他引:3  
配子体自交不亲和植物的自交不亲和性是由雌蕊自交不亲和因子和花粉自交不亲和因子相互作用的结果。目前已经分离和鉴定了雌蕊自交不亲和基因及其表达产物。最近从金鱼草、Prumusdulcis、梅等植物中分离的F-box基因,它具有花粉S基因特点,即在花药、成熟的花粉和花粉管中特异表达;在基因位置上,与S-RNase基因紧密连锁;不同物种或同一物种不同品种F-box基因间核苷酸和氨基酸序列上存在高度多态性。通过分子生物学方法和杂交授粉试验证明所分离的F-box基因是花粉自交不亲和基因,但目前尚未分离出该类基因相应的表达蛋白。主要综述了配子体自交不亲和植物花粉自交不亲和基因的发现、基因的结构、雌蕊自交不亲和因子和花粉自交不亲和因子相互作用的模型。  相似文献   

20.
欧李自交不亲和S基因的克隆及序列分析   总被引:3,自引:0,他引:3  
以6株欧李优选株系为实验材料,利用引物EM-PC2consFD和EM-PC3consRD对欧李进行S等位基因的专一性PCR扩增、克隆测序,获得了9个大小不同的序列,经BLAST分析确定为欧李的9个新S基因,分别命名为S1~S9,GenBank登录号依次为EF569602、EF569603、EF577404、EF577405、EF595836、EF595837、EF601047、EF653137、EF653138,并确定了6株欧李优选株系的S基因型。依据欧李的9个新S基因和李属其它S基因构建系统树,聚类结果显示李、杏、梅、欧李、扁桃及甜樱桃种间相互交叉,表明李属果树的S基因起源于共同的祖先;李、杏、梅、扁桃及甜樱桃应归为一个属,即李属;并初步探讨了欧李的分类地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号