首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In hard-rock terrain, due to the lack of primary porosity in the bedrock, joints, fault zones, and weathered zones are the sources for groundwater occurrence and movement. To study the groundwater potential in the hard-rock terrain and drought-prone area in the Niva River basin, southern Andhra Pradesh state, India, Landsat 5 photographic data were used to prepare an integrated hydrogeomorphology map. Larsson's integrated deformation model was applied to identify the various fracture systems, to pinpoint those younger tensile fracture sets that are the main groundwater reservoirs, and to understand the importance of fracture density in groundwater prospecting. N35°–55°E fractures were identified as tensile and N35°–55°W fractures as both tensile and shear in the study area. Apparently, these fractures are the youngest open fractures. Wherever N35°–55°E and N35°–55°W fracture densities are high, weathered-zone thickness is greater, water-table fluctuations are small, and well yields are high. Groundwater-potential zones were delineated and classified as very good, good to very good, moderate to good, and poor. Electronic Publication  相似文献   

3.
Seasonal rise of groundwater level manifests aquifer recharge through infiltration. Spatial variation of aquifer recharge within the same basin or terrain is a function of terrain heterogeneity governed by different hydrogeological factors. However, assessment of relations between water-level fluctuations (WLF) with various hydrogeological factors is not straightforward. In the present study, various hydrogeological factors that could influence aquifer recharge in the deformed crystalline Aravalli terrain of India have been analysed. Frequency plots have been used to assess the variations in WLF under different geological parameter classes. Seasonal WLF associated with these factors have been compared using various statistical parameters. Parametric and non-parametric statistical tests have been used to determine the statistical significance of fluctuation difference. The study infers that saturated thickness, lineament, lineament-intersection, and drainage beside surface elevation and well depth are the main geological factors influencing aquifer recharge in the Aravalli terrain. Median values under these factors are integrated and compared with the interpolated values of mean WLF at hypothetical well locations. They are found to closely resemble each other. This infers capability and applicability of the technique in identifying key factors governing WLF, and in predicting WLF at unexplored locations.  相似文献   

4.
Groundwater levels in hard-rock areas in India have shown very large declines in the recent past. The situation is becoming more critical due to a paucity of rainfall, limited surface water resources and an increasing pattern of groundwater extraction in these areas. Consequently, the Ground Water Department with the aid of World Bank has implemented the water structuring programme to mitigate groundwater scarcity and to develop a viable solution for sustainable development in the region. The present study has been undertaken to assess the impact of artificial groundwater recharge structures in the hard-rock area of Rajasthan, India. In this study groundwater level data (pre-monsoon and post-monsoon) of 85 dug-wells are used, spread over an area of 413.59 km2. The weathered and fractured gneissic basement rocks act as major aquifer in the area. Spatial maps for pre- and post-monsoon groundwater levels were prepared using the kriging interpolation technique with best fitted semi-variogram models (Spherical, Exponential and Gaussian). The groundwater recharge is calculated spatially using the water level fluctuation method. The entire study period (2004–2011) is divided into pre- (2004–2008) and post-intervention (2009–2011) periods. Based on the identical nature of total monsoon rainfall, two combinations of average (2007 and 2009) and more than average (2006 and 2010) rainfall years are selected from the pre- and post-intervention periods for further comparisons. All of the water harvesting structures are grouped into the following categories: as anicuts (masonry overflow structure); percolation tanks; subsurface barriers; and renovation of earthen ponds/nadis. A buffer of 100 m around the intervention site is taken for assessing the influence of these structures on groundwater recharge. The relationship between the monsoon rainfall and groundwater recharge is fitted by power and exponential functions for the periods of 2004–2008 and 2008–2011 with R 2 values of 0.95 and 0.98, respectively. The average groundwater recharge is found to be 18% of total monsoon rainfall prior to intervention and it became 28% during the post-intervention period. About 70.9% (293.43 km2) of the area during average rainfall and more than 95% (396.26 km2) of the area during above-average rainfalls show an increase in groundwater recharge after construction of water harvesting structures. The groundwater recharge pattern indicates a positive impact within the vicinity of intervention sites during both average and above-average rainfall. The anicuts are found to be the most effective recharge structures during periods of above-average rainfall, while subsurface barriers are responded well during average rainfall periods. In the hard-rock terrain, water harvesting structures produce significant increases in groundwater recharge. The geo-spatial techniques that are used are effective for evaluating the response of different artificial groundwater recharge techniques.  相似文献   

5.
The Aravalli Range runs southwest from Delhi for a distance of about 700 km. Its western margin is well defined, but the eastern margin is diffuse. Five geomorphic provinces are recognized in the study area: the western piedmont plains; the ridge and valley province which in the Central Aravallis occurs at two different heights separated by a fault scarp; the plateau province demarcated from the former by a fault scarp, confined to the Southern Aravallis, and occurring for a short stretch at two heights across another fault scarp; the BGC rolling plains east of the Range; and the BGC uplands south of the above. The scarps coincide with Precambrian faults. A series of rapids and water-falls, together with deeply entrenched river courses across the scarps and the youthful aspects of the escarpments with no projecting spurs, or straight river courses along their feet, all point unmistakably to a recent or post-Neogene vertical uplift along pre-existing faults. Presence of knickpoints at a constant distance from the Range in all west-flowing rivers, the ubiquitous terraces, and river courses entrenched within their own flood-plain deposits of thick gritty to conglomeratic sand, are indicative of a constant disturbance with a gradual rise of the Range east of the knickpoint, wherefrom the coarse materials were carried by the fast west-flowing streams. There is a differential uplift across the plateau scarp together with a right-lateral offset.This epeirogenic tectonism is ascribed to the collision of the Eurasian and the subducting Indian plates and to a locking of their continental crusts. By early Pleistocene, with the MBT gradually dying off, continued plate movement caused a flexural bending of the plate by a moment generated at the back, and a possible delinking of the continental crust along the zone of subduction. The felexural bending ripped open the Precambrian regional faults. The differential uplift and the difference in the distances of the nodes on two sides of the major reactivated fault were possibly caused by a difference in the values of the flexural rigidity and the foundation modulus owing to a slight compositional difference of the constiuent rocks in the two sectors.  相似文献   

6.
Storm event beds in the Paleoproterozoic riftogenic sedimentary succession of Aravalli Supergroup are described from a 12.8 m-thick sandstone-mudstone interbedded unit in Zawar area, Rajasthan, India. The storm event beds include different primary structural assemblages indicating deposition from waning storm current. Sequential arrangement of beds with characteristic primary structural assemblages suggests deposition under a transgressive phase, and overall retrogradational evolution of the storm-succession provides evidence in favour of faster downsagging of the basin floor. The Pb-Zn sulphide ore bearing sedimentary succession of Zawar records repeated downsagging and exhumation of the basin floor in the frame of continental rift tectonics.  相似文献   

7.
8.
Large-scale structures, textures and mineral assemblages in the Precambrian rocks of the Banded Gneissic Complex and the overlying Delhi Group in north-central Aravalli Mountain reveal a complex deformational-crystallization history. In the basement Gneissic Complex at least three deformational events, D0, D1 and D2, and two separate episodes of metamorphism, M1 and M2, are recognized. The supracrustal Delhi Rocks display only two phases of deformation, D1 and D2, associated with a single protracted period of metamorphism, M2.The first phase of deformation (D1) of the Delhi orogeny (1650-900 m.y.) produced large isoclinal folds that are overturned towards the southeast and have gentle plunges in NE and SW directions. The second phase of deformation (D2) gave rise to tight open folds on the limbs and axial-plane surfaces of the D1 folds. These folds generally plunge towards the N and NNW at 30°–80°. In the Basement Complex one more deformation (D0) of the Pre-Delhi orogeny (> 2000 m.y.) is recorded by the presence of reclined and recumbent folds with W to WNW trending fold axes. The D0 folds were superimposed by D1 and D2 folds during the Delhi orogeny.The three deformational events have been correlated with the crystallization periods of minerals in the rocks and a setting in time is established for this part of the Aravalli range.  相似文献   

9.
International Journal of Earth Sciences - We report, using the microtremor method, a subsurface granitic pluton underneath the Narukot Dome and in its western extension along a WNW profile, in...  相似文献   

10.
We present values of velocity of ground water percolation (Vg) over large depth intervals, varying from shallow to deeper depths in Indaram area of Godavari sub-basin. The velocities have been estimated using available measured geothermal data. Sub-surface temperatures were measured in seven boreholes. Terrestrial heat flow values are calculated using temperature data and measured values of thermal conductivity of core samples. The results show that Vg is ~3.4 ×10?7 cm /sec in the top layers (70–150 m) and decreases to ~0.04×10?7 cm/sec in the deeper levels around 350 m depth and becomes negligibly small thereafter, thereby, indicating that the overall permeability of the sub-surface layers, due to the occurrence of successions of permeable, semi-permeable layers gets reduced to more or less zero at depths around 350 m. The value of Thermal Peclet Number, which is the ratio of the heat transfer through convection to that through conduction, naturally becomes negligible around this depth in the area. The observed consistency of the magnitude of heat flow through various deep sections is a clear indicator that water percolation is practically reduced to zero at depths around 320–400 m and that conduction is the dominant mechanism of heat transfer below the inferred depth section, while the upper layers are dominated by recharge at various depths by near surface water from streams at Indaram.  相似文献   

11.
In this paper, remote sensing, geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Vaigai basin, Tamilnadu. Several digital image processing techniques, including standard color composites, intensity–hue–saturation transformation and decorrelation stretch were applied to map rock types. Remote sensing data were interpreted to produce lithological and lineament maps such as geology, geomorphology, soil hydrological group, land use/land cover and drainage map were prepared and analyzed using GIS Arc Map GIS Raster Calculator module as geomorphology?×?12?+?drainage?×?9?+?lineament?×?5?+?geology?×?8?+?land use?×?2?+?relief?×?4. The final cumulative map generated by applying the above equation had weight values ranging from 0.315 to 4.515. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan, the thematic maps for the study area.  相似文献   

12.
13.
The Aravalli rocks (> 2060 Ma old) which crop out around Udaipur, Western India, comprise a thick sequence of metasediments with stromatolites and basal volcanics resting unconformably over a peneplained basement, known as the Banded Gneissic Complex (ca. 2585 Ma old). The rocks have undergone a very low grade of metamorphism, and display a complex structure resulting from two major and several minor episodes of folding.There are two distinctly different ‘facies sequences’ in the Aravalli rocks, indicating deep-sea and nearshore shelf environments. The stratigraphic sequence of the rocks deposited under the shelf environment starts with basic volcanics and tuffs (altered to greenschists) and quartizites with arkosic conglomerate. In the next sequence carbonates predominate in association with orthoquartzites, carbonaceous phyllites, phyllites, and stromatolitic rock-phosphate. The carbonate sequence passes upward into greywacke-phyllite-lithic arenite in the distal parts and conglomerate-arkose-orthoquartzite in proximal areas. The youngest sequence comprises orthoquartzite with silty arenite.The distribution of different facies, particularly that of dolomite with stromatolitic rock-phosphate, is controlled by sea-floor topography suggesting the presence of an epicontinental sea bounded by a landmass to the west and a series of islands and shoals.Sedimentation in the shelf and epicontinental sea was presumably triggered by development of fault-controlled troughs along craton margins. Terrigenous debris was deposited in newly-developed troughs with contemporaneous volcanicity along trough margins. With the erasing of the ephemeral relief in the provenance, carbonate deposition was initiated. The environment encouraged algal growth and formation of stromatolitic rock phosphate. Carbonaceous phyllites developed in areas of restricted circulation. Rapid influx of terrigenous detritus with renewed tectonism in the next phase resulted in the deposition of a turbidite sequence of greywacke-phyllite and lithic arenite in the deeper parts of the epicontinental sea, and conglomerate-arkose-orthoquartizite in the marginal areas. The final phase of sedimentation was presumably under fluvial conditions which marked the completion of epicontinental trough filling. The nature of the terrigenous clasts indicates a predominantly granitic source of sediments. Supply of sediment was mainly from the continent to the east and partly from a landmass to the west. The cycle of sedimentation noted in the epicontinental Aravalli sea is broadly similar to the model of tectonic stages suggested by Krynine (1942).  相似文献   

14.
The southeastern fringe of the Precambrian Aravalli fold belt has been designated as Jahazpur Belt, which includes two greenschist facies metasedimentary lithopackages, Hindoli (Late Archean/Paleoproterozoic) and Jahazpur (Paleoproterozoic) Groups. We present geochemical data on metapelite (phyllite) and metagreywackes from the Hindoli Group. Metapelites are enriched in alumina while metagreywackes show a wide range and higher abundance of silica. Covariance between TiO2 — Al2O3, K2O — Al2O3 pairs and moderate to high SiO2/MgO ratios indicate a strong weathering control. Chemical Index of Alteration (CIA = 68 for metagraywackes; 75 for metapelites) reveals moderately weathered protoliths for them. Fractionated LREE pattern with almost flat HREE trend and moderate to high Eu anomalies (Eu/Eu* = 0.66 to 0.8) indicate feldspar bearing granite — granodiorite as probable compositions in the provenance. Very high PIA values (93) for metapelites reflect almost complete feldspar dissolution while the corresponding values for metagraywackes (68) are relatively lower. The diagnostic immobile trace elements (Sc, Zr, Th) can be interpreted as a variable felsic source (mainly granitic and subordinate granodioritic) for metagreywackes and a granodioritic (more mafic) one for metapelites. Considering the broad Precambrian geological set-up of NW India, the Banded Gneiss Complex (BGC), which predominantly comprises TTG gneisses and granites, amphibolite, etc. seems to be the most likely provenance for Hindoli sediments.  相似文献   

15.
Extracted groundwater, 90% of which is used for irrigated agriculture, is central to the socio-economic development of India. A lack of regulation or implementation of regulations, alongside unrecorded extraction, often leads to over exploitation of large-scale common-pool resources like groundwater. Inevitably, management of groundwater extraction (draft) for irrigation is critical for sustainability of aquifers and the society at large. However, existing assessments of groundwater draft, which are mostly available at large spatial scales, are inadequate for managing groundwater resources that are primarily exploited by stakeholders at much finer scales. This study presents an estimate, projection and analysis of fine-scale groundwater draft in the Seonath-Kharun interfluve of central India. Using field surveys of instantaneous discharge from irrigation wells and boreholes, annual groundwater draft for irrigation in this area is estimated to be 212 × 106 m3, most of which (89%) is withdrawn during non-monsoon season. However, the density of wells/boreholes, and consequent extraction of groundwater, is controlled by the existing hydrogeological conditions. Based on trends in the number of abstraction structures (1982–2011), groundwater draft for the year 2020 is projected to be approximately 307 × 106 m3; hence, groundwater draft for irrigation in the study area is predicted to increase by ~44% within a span of 8 years. Central to the work presented here is the approach for estimation and prediction of groundwater draft at finer scales, which can be extended to critical groundwater zones of the country.  相似文献   

16.
Soil contamination by heavy metals has been a major concern for last few decades due to increase in urbanization and industrialization. The main objective of this research was to identify the heavy metal contaminated zones in the study area. Twenty five soil samples collected throughout the agriculture, residential and industrial areas were analysed by X-ray Fluorescence Spectrometer (XRF) for trace metals and major oxides. These metals can affect the quality of soil and infiltrate through the soil, thereby causing groundwater pollution. Based on the chemical analysis of major oxides (SiO2, Al2O3, ?Fe2O3, MnO, MgO, CaO, Na2O, K2O, TiO2, and P2O5) and their distribution; it is observed that these soils are predominantly siliceous type with slight enrichment of alumina component in the study area. Correlation matrix (CM) and factor analysis (FA) is employed to the heavy metal variables, viz., Ba, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn and Zr of the soil to determine the dominant factors contributing to the soil contamination in the area. In the analysis, five factors emerged as significant contributors to the soil quality. The total contribution of these five factors is about 90%. The contribution of the first factor is about 45% and has significant positive loadings of Co, Cr, Cu, Ni and Zn. The contribution of second factor is 22% and has significant positive loadings of Rb, Sr and Y. The contribution of third, fourth and fifth factors is 10, 8 and 5% and show positive loadings for lead, molybdenum and barium respectively to the soil contamination. The spatial variation maps deciphering different zones of heavy metal concentration in the soil were generated in a GIS (geographic information system) based environment using ArcGIS 9.3.1. The results reveal that heavy metal contamination in the area is mainly due to anthropogenic activities.  相似文献   

17.
Ground deformation phenomena affecting the town of Tuzla (Bosnia Herzegovina), as consequence of underground salt deposits exploitation, have been surveyed since 60?years ago. The growing of cavities beneath the town and successive surface deformations have induced several hazard factors such as ground subsidence, deep and shallow fracturing and intense groundwater table oscillations. Fortunately, this processes had no catastrophic consequences such as sinkholes developing. Previous studies analyzed the historical database of topographic and piezometric data and highlighted a cumulative subsidence rate up to 12 meters over a period spanning from the 1956 to the 2003. Fractures arose as obvious result of ground deformation and caused damages and demolitions to thousands of buildings, with almost 15,000 people evacuated. Nowadays, in order to diminish the deformation processes, a strong reduction in brine withdrawal has been introduced by the local authorities. This caused an uplift of the water table which actually makes the spatial pattern of deformation more complex. In fact, in the most urbanized area, the sinking phenomena are now turning into uplift displacements. The presence of such a hazard required an urban vulnerability assessment able to support local authorities in the forthcoming planning procedure. The vulnerability assessment of urban elements over a wide area, potentially affected by deformation phenomena, has been accomplished by an integration between GIS solutions and a multicriteria approach based on ELECTRE-TRI methodology. The vulnerability procedure is able to define a discrete map where the 50?×?50?m width elementary cells report the most vulnerable parts of the town. In particular, the ELECTRE-TRI methodology is used to combine each vulnerable urban element with the others, expressed as vector data in a geographical dataset. The multicriteria approach is performed outside the GIS environment by the ELECTRE-TRI 2.0 package and requires a preliminary rasterization of the used dataset.  相似文献   

18.
Identifying a good site for groundwater exploitation in hard-rock terrains is a challenging task. In Sinai, Egypt, groundwater is the only source of water for local inhabitants. Interpretation of satellite data for delineation of lithological units and weathered zones, and for mapping of lineament density and their trends, provides a valuable aid for the location of groundwater promising areas. Complex deformational histories of the wide range of lithological formations add to the difficulty. Groundwater prospect mapping is a systematic approach that considers the major controlling factors which influence the aquifer and quality of groundwater. The presented study aims to delineate, identify, model and map groundwater potential zones in arid South Sinai using remote sensing data and a geographic information system (GIS) to prepare various hydromorphogeological thematic maps such as maps of slope, drainage density, lithology, landforms, structural lineaments, rainfall intensity and plan curvature. The controlling-factor thematic maps are each allocated a fixed score and weight, computed by using a linear equation approach. Furthermore, each weighted thematic map is statistically computed to yield a groundwater potential zone map of the study area. The groundwater potential zones thus obtained were divided into five categories (very poor, poor, moderate, good and very good) and were validated using the relation between the zone and the spatial distribution of productive wells and of previous geophysical investigations from a literature review. The results show the groundwater potential zones in the study area, and create awareness for better planning and management of groundwater resources.  相似文献   

19.
In a terrain with more than one litho-unit, the traditional water balance approach provides a single spatially averaged specific yield. A methodology is proposed here, which can be applied to estimate specific yields of individual litho-units in such terrains. This approach is demonstrated here considering two watersheds, which are covered partly by limestone and partly by sandstone. Watershed wise specific yields were estimated using a traditional water balance method. The specific yields thus obtained are the volume-weighted averages of the specific yields of the individual litho-units in the watersheds. Based on the volumes of aquifers desaturated and the watershed wise specific yield values, a set of two linear equations in two variables was formulated. These linear equations were solved to get the specific yields of the individual litho-units. Specific yields of sandstone (Chandarpur Group) and limestone (Charmuria Formation) units in the study area were thus estimated to be 0.004 and 0.037 respectively.  相似文献   

20.
The suitability of groundwater quality for drinking and agricultural purposes was assessed in the rural areas of Delhi based on the various water quality parameters. A total of 50 ground water samples were collected randomly from different sources viz. hand pump, tube well, boring and analyzed for major ion chemistry to understand the operating mechanism of geochemical processes for ground water quality. The quality analysis is performed through the estimation of pH, EC, TDS, total hardness, total alkalinity, Na, K, Cl, NO3, SO4, DO, BOD, Cu, Cr, Cd, Ni, Zn and Pb. Hydrochemical facies were identified using Piper, Durov and Chadha diagram. Chemical data were also used for mathematical calculations (SAR, %Na, RSC, PI, KI, and chloroalkaline indices) for better understanding the suitability of ground water for irrigation purposes. The results of saturation index shows that all the water samples were supersaturated to undersaturated with respect to carbonate minerals and undersaturated with respect to sulphate and chloride minerals. According to USSL diagram, most of the samples fall in the field of C3S1, indicating medium salinity and low sodium water which can be used for almost all types of soil with little danger of exchangeable sodium. Assessment of water samples from various methods indicated that majority of the ground water in the study area is chemically suitable for drinking and agricultural uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号